
Augment before You Try: Knowledge-Enhanced Table Question
Answering via Table Expansion

Yujian Liu1 Jiabao Ji1 Tong Yu2 Ryan Rossi2

Sungchul Kim2 Handong Zhao2 Ritwik Sinha2 Yang Zhang3 Shiyu Chang1

1UC Santa Barbara, 2Adobe Research, 3MIT-IBM Watson AI Lab
1{yujianliu,jiabaoji,chang87}@ucsb.edu, 3yangzhan@mit.edu

2{tyu,ryrossi,sukim,hazhao,risinha}@adobe.com

Abstract
Table question answering is a popular task that
assesses a model’s ability to understand and in-
teract with structured data. However, the given
table often does not contain sufficient informa-
tion for answering the question, necessitating
the integration of external knowledge. Existing
methods either convert both the table and ex-
ternal knowledge into text, which neglects the
structured nature of the table; or they embed
queries for external sources in the interaction
with the table, which complicates the process.
In this paper, we propose a simple yet effec-
tive method to integrate external information in
a given table. Our method first constructs an
augmenting table containing the missing infor-
mation and then generates a SQL query over the
two tables to answer the question. Experiments
show that our method outperforms strong base-
lines on three table QA benchmarks. Our code
is publicly available at https://github.com/
UCSB-NLP-Chang/Augment_tableQA.

1 Introduction

Tables are ubiquitous types of information sources
that have attracted significant attention in the NLP
community. Researchers have developed models
that understand tabular data and perform various
tasks, including table question answering (QA) (Pa-
supat and Liang, 2015; Chen et al., 2020c; Nan
et al., 2022; Zhu et al., 2021a; Chen et al., 2021),
table fact verification (Chen et al., 2020b; Aly et al.,
2021), table-to-text generation (Parikh et al., 2020;
Chen et al., 2020a; Nan et al., 2021), etc. A critical
challenge in these tasks is that tables often lack suf-
ficient information for the task at hand, which ne-
cessitates the integration of additional knowledge.
For example, in Figure 1, to answer the question

‘How many chords have a root not based on a sharp
or flat note?’, a model needs to have the knowledge
of whether each root is based on a sharp or flat note,
which is not provided in the table and can only be
obtained from external sources.

Existing methods for integrating information
from tables and external sources can be mainly
categorized into two groups. The first method, ex-
emplified by Program-of-Thought (Chen et al.,
2023), linearizes the table into text and combines
it with external knowledge in textual format (Xie
et al., 2022; Chen, 2023). However, the linearized
table no longer has the structured format, making
it difficult to retrieve required values from the table
and perform comparisons and calculations.

An alternative approach, represented by Binder
(Cheng et al., 2023), combines the symbolic
language execution with large language models
(LLMs). In this method, the model interacts with
the table through symbolic language like SQL,
which maintains the structured format. Part of the
SQL query is replaced with an LLM query that
extracts knowledge from the LLM and returns the
results for further SQL execution. For instance, in
Figure 1 (b), the method queries LLMs for whether
each root is sharp or flat and uses the results as a
filtering criterion in a SQL statement. However, it
requires the model to learn to embed LLM queries
in the standard SQL language, which differs sub-
stantially from the SQL statements the model has
been trained on. As a result, it is more likely to
generate syntactically wrong statements that lead
to execution errors.

In this paper, we propose a simple yet effective
method for combining external knowledge with a
given table. As shown in Figure 1 (c), our method
starts by analyzing the additional information re-
quired for answering the question. It then queries
a knowledge source for the information and orga-
nizes the results in a tabular format. This newly
created table augments the original table with addi-
tional information, and a SQL query is generated
to obtain the answer from the two tables. Such
an augment-then-generate pipeline eliminates the
need to embed LLM queries in SQL statements
while preserving the structured format of the table.

ar
X

iv
:2

40
1.

15
55

5v
1

 [
cs

.C
L

]
 2

8
Ja

n
20

24

https://github.com/UCSB-NLP-Chang/Augment_tableQA
https://github.com/UCSB-NLP-Chang/Augment_tableQA

Question: How many chords have a root not
based on a sharp or flat note?

Root accidental
'C' 'no'

'D♭' 'yes'
…

LLM

SELECT COUNT(*)
FROM t2 WHERE
accidental = ‘no’

Execution Result: 2 ✓

Step 1 Step 2 Step 3

Query: Is the root based
on a sharp or flat note?

Source
!

(c) Our Framework

(a) Program of Thought
✘

Reading
Error

Chord Root Major
Third

Perfect
fifth

'C7' 'C' 'E' 'G'

'D♭7' 'D♭' 'F' 'A♭'

'C♯7' 'C♯' 'E♯ (F)' 'G♯'

Wiki
+LLM

Relevant column: Root

Linearized
Table

(b) Binder

LLM

Q: Sharp or flat?

LLM

Python
Program

Structured
Table LLM

SQL ✘
Integrating
Error

Figure 1: Comparison between Program-of-Thought, Binder, and our method.

We evaluate our method on three table QA
datasets that require different types of external
knowledge (Chen et al., 2021; Zhu et al., 2021b; Pa-
supat and Liang, 2015). Our method outperforms
or matches strong baselines on all datasets. Par-
ticularly, it demonstrates significant improvements
over Program-of-Thought in questions with large
tables or require complex tabular operations, and
compared to Binder, it exhibits fewer execution
errors and achieves better performance (8.32%).

2 Related work

Table question answering task requires both the
ability to reason over structured data and to un-
derstand textual contents in the table. Traditional
methods utilize semantic parsing to convert the nat-
ural language question into executable commands,
which retrieve and process data in the table to ob-
tain answers (Zettlemoyer and Collins, 2012; Be-
rant et al., 2013; Yin and Neubig, 2017; Zhong
et al., 2017; Shaw et al., 2020; Yu et al., 2018;
Rajkumar et al., 2022). However, these methods
require all question-related information to present
in the table in a rigorous format, which is limited
when applied to web tables that often do not have a
clean schema. Recent works pre-train neural mod-
els on large-scale tabular data, and directly encode
tables and generate answers in an end-to-end fash-
ion (Liu et al., 2022; Xie et al., 2022; Herzig et al.,
2020; Yin et al., 2020; Zhao et al., 2022; Deng et al.,
2020). To reduce the training cost, some works fur-
ther leverage LLMs to read and reason over tables
(Chen, 2023; Pourreza and Rafiei, 2023).

Although end-to-end methods achieve impres-
sive performance on table QA benchmarks, their
predictions lack interpretability and are not robust

to input perturbations (Yang et al., 2022). For this
reason, recent works propose to combine LLMs
with symbolic language execution. Particularly,
Cheng et al. (2023) expands the SQL language by
incorporating function calls to LLMs in SQL state-
ments. Ye et al. (2023) utilizes LLMs to decompose
the question and table into sub-problems that can
be solved with SQL queries. Chen et al. (2023)
prompts LLMs to generate the reasoning process
as Python programs. Similar to our method, a con-
current work (Wang et al., 2024) proposes to dy-
namically update the table content in the reasoning
process. They employ LLMs to iteratively generate
operations such as selecting a subset of rows or
adding a new column, and the final resulting table
is fed to LLMs to generate the answer. However,
their chain of operations is prone to error propa-
gation, while our method retains the original table
content and augments it with required information.

3 Methodology

3.1 Problem Formulation

Given a natural language question Q, a table T ,
and a knowledge source S, the task is to generate a
correct answer for the question. Crucially, T might
not contain all the necessary information to answer
the question, which necessitates the use of S to
obtain additional information. In this paper, we
consider S to be either a relevant text document or
an LLM that we can query.

3.2 Overall Framework

Our method contains three steps, as illustrated in
Figure 1 (c). The detailed instructions and exam-
ples for each step are listed in Appendix A.

Step 1: Analyze question. An LLM is instructed
to analyze the given question and table to determine
what additional information is needed to answer
the question. We instruct the LLM to first list out
all the necessary information for answering Q. For
each piece of information, it then determines if
the information is present in T or not. The output
of this step is a list of queries that can be later
used to obtain additional information from S, or
empty if no additional information is needed. For
example, in Figure 1 (c), the model outputs ‘Is the
root based on a sharp or flat note?’. Additionally,
for information that needs to be obtained based on
the table, the LLM will also specify which columns
are needed, e.g., the model specifies that the query
needs to be answered for each row in the ‘Root’
column.

Step 2: Construct augmenting table. Using
output queries from step 1, the LLM is used to
obtain corresponding information from the source
S. Specifically, when S is a text document, this
step is similar to the reading comprehension task
where the LLM needs to extract answers to the
queries from the document. When S is an LLM,
this step resembles a QA task where the LLM needs
to directly answer the query. Finally, the obtained
information is organized into a separate table that
can complement the existing table T . Figure 1
(c) shows an example where a new table of two
columns is constructed. It is worth mentioning that
this step is flexible and can be easily extended to
other types of sources S.

Step 3: Generate SQL query. With the original
and newly constructed tables, the LLM then gener-
ates a SQL query that can be executed to obtain the
answer to the question. Importantly, the two tables
contain sufficient information for answering Q, and
the LLM can generate a standard SQL query, which
is easier and more similar to its pre-training data.

4 Experiments

In this section, we empirically evaluate our method
on table QA benchmarks, focusing on two types
of questions that might require external knowledge
from different sources.
• Open-domain knowledge where external infor-

mation comes from an open domain. We use the
embedded knowledge in LLMs as the source.

• Closed-domain knowledge where all informa-
tion is within a given table and a text document.
In this case, the document is the external source.

We will discuss the common experiment settings
in Section 4.1 and individual experiments for each
type in Sections 4.2 and 4.3 respectively.

4.1 Experiments Setup

Implementation details. We prompt an LLM
with detailed instructions and several in-context
examples to complete all three steps in our method.
To feed the table to the LLM for question analysis
(Step 1) and generating SQL queries (Step 3), we
linearize the table by concatenating columns with
special tokens (e.g., ‘|’) following previous works
(Chen et al., 2023). In all experiments, we use
GPT-3.5-turbo-1106 through the official API as
the backbone LLM for our method and all baselines.
We use greedy decoding (i.e., temperature equals
0) for our method and all baselines. To have a fair
comparison, we use the same number of in-context
examples as baselines (details in Appendix A).

Baselines. We compare with five LLM-based
baselines. ❶ End-to-End that prompts the LLM to
directly output the answer given the table, question,
and optionally the text document. ❷ Table-CoT
(Chen, 2023) that uses the chain-of-thought prompt-
ing (Wei et al., 2022) to ask the model to addi-
tionally output the reasoning chain. ❸ Dater (Ye
et al., 2023), ❹ Binder (Cheng et al., 2023), and
❺ Program-of-Thought (PoT) (Chen et al., 2023)
that combine LLMs with symbolic language execu-
tion. Please refer to Section 2 for details. Particu-
larly, since Binder does not generate the reasoning
chain, we include an improved variant where we
add chain-of-thought prompting (Binder+CoT).

Evaluations. We adopt the exact match rate
(EM) between the model-predicted answer and the
ground-truth answer as the metric. We use the same
evaluation code for all methods for fair comparison.

4.2 Open-Domain Knowledge

Datasets. For open-domain knowledge, we evalu-
ate on WIKITQ dataset (Pasupat and Liang, 2015),
which requires complex table reasoning to answer
the question. According to Shi et al. (2020), around
20% of questions in WIKITQ are not answerable
by pure SQL queries, which are likely to require
additional knowledge not present in the table. We
evaluate all methods on a subset of 1000 samples
in the test set due to the cost of full evaluation.

Results. Table 1 presents the EM. There are two
observations from the table. First, methods that in-

Test EM

End-to-End 46.80
Table-CoT (Chen, 2023) 49.40

PoT (Chen et al., 2023) 53.60
Dater (Ye et al., 2023) 48.40
Binder (Cheng et al., 2023) 34.80
Binder+CoT 54.10
Ours 55.80

Table 1: Exact match on WIKITQ test set. Methods in
the bottom panel involve program execution.

0 500 1000 1500 2000 2500 3000
Table Tokens

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ex
ac

t M
at

ch

Method
End-to-end
TableCoT
PoT
Dater
Binder
Binder+CoT
Ours

Figure 2: Performance grouped by table length.

volve program execution are generally better than
those that do not, highlighting the value of accurate
data retrieval or processing. Second, our method
achieves the best performance, showing its effec-
tiveness. To further evaluate scalability across table
sizes, Figure 2 plots the performance breakdown
by the number of tokens in the table. As can be
observed, our method and Binder+CoT are the only
methods that maintain performance on large tables,
whereas methods that rely on LLMs to extract infor-
mation from linearized tables such as Table-CoT
and PoT suffer significant performance degradation
on large tables. This illustrates the advantage of
SQL queries when interacting with the table.

Comparison with Binder+CoT. To further ver-
ify whether our augment-then-generate pipeline
leads to easier and more accurate SQL genera-
tion over the best-performing baseline Binder+CoT
(hereafter Binder), we compare the two methods
on the subset of questions that are not solvable
by pure SQL (Shi et al., 2020), which rely more
on the integration of external knowledge. Fig-
ure 3 shows the EM and percentage of execution
errors, where our method demonstrates a more
pronounced improvement. To better pinpoint the
cause of performance difference, we add a post-
processing step for Binder, where we extract the
LLM queries from the SQL statement generated

Binder Binder-separate Ours
20

22

24

26

28

30

32

34

36

Ex
ac

t M
at

ch

26.24

29.12

34.56

Binder Binder-separate Ours
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ex
ec

ut
io

n
Er

ro
r

20.16

14.40

5.76

Figure 3: Comparison between our method and Binder.

by Binder, query LLMs for desired information
and add it as a new column in the original table,
and re-generate a standard SQL (without LLM
queries) based on the augmented table. This variant
(dubbed Binder-separate) improves the EM and
reduces execution errors over Binder, which vali-
dates our hypothesis that combining LLM queries
with SQL complicates the generation, leading to
more syntax errors in generated programs. Notably,
our method still incurs fewer execution errors than
Binder-separate, which is likely due to the fact
that our method generates more augmentations for
the table, thus reducing the complexity of required
SQL (see Appendix C.1 for details and examples).

In Appendix B, we also compare our method
with the concurrent work Chain-of-Table (Wang
et al., 2024). Results show that our method
achieves 1.85 higher EM when using GPT3.5 as
the backbone LLM, demonstrating its effectiveness
despite being simpler and not requiring sequential
operations. Please refer to Appendix B for details.

4.3 Closed-Domain Knowledge
Datasets. For closed-domain setting, we exper-
iment on TATQA (Zhu et al., 2021b) and FinQA
(Chen et al., 2021). Questions in these two datasets
are about a table and a financial report, and the
answer often requires arithmetic operations in ad-
dition to table understanding ability. Since some
questions are answerable with only the table or re-
port, we filter the datasets to only include those that
require both table and report (details in Table 5).

Results. Table 2 presents the results. Binder and
Dater are not included because the original paper
did not evaluate on these datasets and extension to
this setting requires substantial modification. There
are two observations. First, our method and PoT sig-
nificantly outperform the other two baselines that
do not involve program executions, which shows
the benefits of leveraging programs when questions
require arithmetic calculations. Second, although
the input tables are much smaller, which is bene-

TATQA FINQA

End-to-End 35.50 34.18
Table-CoT (Chen, 2023) 34.91 39.87
PoT(Chen et al., 2023) 61.14 54.43
Ours 63.12 53.80

Table 2: Exact match on TATQA and FINQA.

Single Cell Multiple Cells
45

50

55

60

65

70

Ex
ac

t M
at

ch

69.61

56.44

65.75

61.66

TATQA

Program-of-Thought
Ours

Single Cell Multiple Cells

46

48

50

52

54

56

58

60
Ex

ac
t M

at
ch

57.94

49.02

53.27

56.86

FinQA

Program-of-Thought
Ours

Figure 4: Performance decomposition by the number of
table cells needed to answer the question.

ficial for PoT, our method is on par with PoT on
FINQA and outperforms it by 2 EM on TATQA. A
further performance breakdown by the number of
table cells required to answer a question in Figure
4 shows that our method is more effective on ques-
tions that require information from multiple cells,
indicating that our method is more likely to general-
ize to complex questions. Furthermore, it is easier
to locate and correct errors made by our method
as it only requires inspection of the generated SQL
queries, whereas PoT requires checking the whole
table contents (see examples in Appendix C.2).

5 Conclusion

In this paper, we propose a simple method that
augments a given table by creating a new table
that contains the information from external sources.
The LLM then generates a SQL query over the two
tables to answer the given question. Experiments
show that our method outperforms or matches
strong baselines on three table QA benchmarks.

6 Limitation

There are several limitations in this work that need
to be further improved. First, our framework re-
lies on the LLM’s ability to generate correct SQL
statements. If the LLM has limited SQL generation
ability, such as Llama2 in Appendix B, the perfor-
mance of our method will be affected. In addition,
we only evaluate our method on integrating exter-
nal knowledge from two different sources. The
generalizability of our method to other knowledge
sources remains to be assessed.

References
Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. The fact extraction and VERification
over unstructured and structured information
(FEVEROUS) shared task. In Proceedings of
the Fourth Workshop on Fact Extraction and
VERification (FEVER).

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533–1544.

Wenhu Chen. 2023. Large language models are few(1)-
shot table reasoners. In Findings of the Association
for Computational Linguistics: EACL 2023.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020a. Logical natural lan-
guage generation from open-domain tables. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020b. Tabfact: A large-scale
dataset for table-based fact verification. In Interna-
tional Conference on Learning Representations.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020c. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021. FinQA: A dataset of
numerical reasoning over financial data. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In The Eleventh Inter-
national Conference on Learning Representations.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and
Cong Yu. 2020. Turl: Table understanding through
representation learning.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: Table pre-training via learning a neural SQL
executor. In International Conference on Learning
Representations.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria
Lin, Neha Verma, Rui Zhang, Wojciech Kryściński,
Hailey Schoelkopf, Riley Kong, Xiangru Tang,
Mutethia Mutuma, Ben Rosand, Isabel Trindade,
Renusree Bandaru, Jacob Cunningham, Caiming
Xiong, Dragomir Radev, and Dragomir Radev. 2022.
FeTaQA: Free-form table question answering. Trans-
actions of the Association for Computational Linguis-
tics.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi-
angru Tang, Aadit Vyas, Neha Verma, Pranav Kr-
ishna, Yangxiaokang Liu, Nadia Irwanto, Jessica
Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma,
Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan,
Xi Victoria Lin, Caiming Xiong, Richard Socher, and
Nazneen Fatema Rajani. 2021. DART: Open-domain
structured data record to text generation. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers).

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. arXiv preprint arXiv:
2304.11015.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2020. Compositional general-
ization and natural language variation: Can a seman-
tic parsing approach handle both? arXiv preprint
arXiv:2010.12725.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic parsing
to SQL queries. In Findings of the Association for
Computational Linguistics: EMNLP 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. UnifiedSKG:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
TableFormer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decompose evidence
and questions for table-based reasoning.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing.

Luke S. Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang, and
Dragomir R. Radev. 2022. Reastap: Injecting table
reasoning skills during pre-training via synthetic rea-
soning examples. Conference on Empirical Methods
in Natural Language Processing.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021a. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers).

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021b. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers).

WIKITQ TATQA FINQA

top_p 1.0 1.0 1.0
max_output_tokens 512 512 512
num_shots 8 8 4

Table 3: Parameters for our greedy generation (sections
4.2 and 4.3).

GPT3.5 Llama2

Augmentation SQL Augmentation SQL
generation generation generation generation

temperature 0.6 0.4 0.8 0.4
top_p 1.0 1.0 1.0 1.0
sampling_n 3 2 or 4 4 3 or 4
max_output_tokens 512 512 256 256
num_shots 8 8 8 8

Table 4: Generation parameters for our ensemble model
on WIKITQ (Appendix B). Augmentation generation
and SQL generation correspond to the step 1 and 3 in
our method.

A Implementation Details

For all methods on all three datasets, we use the
greedy decoding for generation, i.e., temperature
equals 0. Table 3 lists other generation parame-
ters of our method. Table 5 shows the statistics of
datasets used in this paper.

A.1 Open-domain Knowledge

For the open-domain knowledge setting on WIK-
ITQ, since our method generates queries that will
be asked for every single row in one or more
columns, the constructed augmenting table will al-
ways have the same number of rows as the original
table. For simplicity, we directly join the two ta-
bles based on the row index before feeding them to
LLMs to generate the SQL statement in step 3. In
other words, the newly constructed table is joined
on the original table as additional columns, and
the SQL statement will be generated based on the
joined table. Figures 11 and 12 show the detailed
instruction used for this step and a demonstration
of the in-context example. For step 2, we use the
same instruction and in-context examples as Cheng
et al. (2023) to query LLMs for required informa-
tion. An example is shown in Figure 13. For step 3,
we provide LLMs with in-context examples along
with a one-sentence instruction, as illustrated in
Figure 14.

To select a subset of 1000 questions for evalua-
tion, we select one question in every four questions
of the first 4000 samples in WIKITQ, i.e., dataset
= dataset.select(range(0, 4000, 4)). We
use the evaluation code in Cheng et al. (2023) to

calculate the EM for all methods.

A.2 Closed-domain Knowledge

For the closed-domain setting on TATQA and
FINQA, we feed both the text document and the
table to the LLM to provide enough context. To
save the inference cost, we merge steps 1 and 2
together such that the model analyzes the required
additional information and then extracts them from
the document in a single run. We instruct the model
to extract information in a JSON format that can
be easily organized into a table. Figures 15 and
16 show the detailed instruction used and a demon-
stration of the in-context example on TATQA, and
Figures 18 and 19 show the same for FINQA. For
step 3, we provide the original table and the newly
constructed table if available to LLMs. Figures
17 and 20 show a demonstration of the in-context
examples on TATQA and FINQA respectively.

To select questions for evaluation, we only use
those that require both the table and the document.
Specifically, for TATQA, we select questions that
have answer_from=table-text, and for FINQA,
we select those whose ground truth evidence con-
tains at least one table row and one document sen-
tence. We follow Chen et al. (2023) to calculate
the EM.

B Comparison with Chain-of-Table

We additionally compare with Chain-of-Table
(Wang et al., 2024) on WIKITQ. Since their
implementation is not available at the submis-
sion time of this paper, we use the same dataset
and backbone LLMs as theirs and directly com-
pare with the numbers reported in their paper.
Specifically, we use GPT-3.5-turbo-16k-0613
and Llama2-13b-chat (Touvron et al., 2023) as
backbone LLMs and evaluate on the full test set of
WIKITQ. Since their sequential operations require
multiple queries for LLMs, we consider the major-
ity vote of execution results from N SQL queries
as our final prediction. To generate these SQL
queries, we sample m different outputs for step
1 (i.e., m different augmentations), and for each
augmentation, we sample k SQL queries. The total
number of generated samples for each question is
m+ αm+mk, where α is the percentage of step
1 outputs that actually need additional information.
Table 4 lists the parameters for generation.

The results are shown in Table 6. As can be ob-
served, our method outperforms Chain-of-Table

WIKITQ WIKITQ SQL unsolvable TATQA FINQA

questions 1000 625 507 158
Split Test Dev Dev Test
table rows 26.1 28.0 9.7 6.8
table tokens 571.7 685.7 119.1 86.2
Knowledge source S LLMs LLMs Document Document

Table 5: Summary of the datasets used in this paper.

generated samples EM

GPT3.5

Binder 50 56.74
Chain-of-Table ≤ 25 59.94
Ours (6 SQLs) 11.4 61.05
Ours (12 SQLs) 17.4 61.79

Llama2

Binder 50 30.92
Chain-of-Table ≤ 25 42.61
Ours (12 SQLs) 19.82 34.00
Ours (16 SQLs) 23.82 35.34

Table 6: Exact match on full WIKITQ test set. # gen-
erated samples denotes the total number of generated
samples to answer one question.

and Binder when using GPT3.5 as the backbone
LLM, despite using fewer LLM queries. When us-
ing Llama2, Chain-of-Table achieves better per-
formance than Binder and our method. We hypoth-
esize that the performance difference is due to the
limited SQL generation ability of Llama2. An im-
portant difference is that Chain-of-Table feeds
the final table to LLMs and directly asks LLMs
to generate the answer, whereas Binder and our
method prompt LLMs to generate SQL queries and
execute to get the answer, which is affected more
when the LLM has limited SQL generation ability.
In fact, the generated SQL of our method contains
32.9% of execution errors when using Llama2 as
the LLM, compared to that of 8.7% when using
GPT3.5. However, our method still outperforms
Binder on Llama2, demonstrating the benefits of
our augment-then-generate pipeline.

C Additional Examples

C.1 Comparison with Binder

In this section, we elaborate on the com-
parison between our method, Binder, and
Binder-separate. In Figure 3, it can be observed
that our method achieves better performance and
exhibits fewer execution errors than Binder. More-
over, Binder-separate, which separates the SQL

generation and LLM queries in Binder, reduces
its execution errors, validating our hypothesis that
integrating LLM queries in SQL generation could
lead to more syntax errors. Figures 5 and 6 show
two examples where Binder encounters execu-
tion errors when trying to generate a SQL state-
ment with LLM queries, whereas our method and
Binder-separate correctly generate SQL state-
ments to answer the question.

Our method also incurs fewer execution errors
than Binder-separate, which can be ascribed
to the fact that our method generates more aug-
mentations for the table, which significantly re-
duces the complexity of required SQL statements.
Figure 7 illustrates one such example, where
Binder-separate gets errors because the required
information is missing from the table, whereas our
method correctly answers the question based on
the augmented table. In fact, our method generates
augmentations for 72.3% of the questions, while
Binder only includes LLM queries for 6.1% of the
questions, showing that our method also benefits
the augmentation of additional information.

C.2 Comparison with PoT

We now provide more examples for the comparison
between our method and PoT. Based on Figure
4, our method is more effective on questions that
require multiple table cells for the answer. Figures
8 and 9 show two such examples, where our method
selects the correct values from the table to perform
calculations, but PoT retrieves wrong values from
the table, despite generating programs with correct
logic. According to Chen et al. (2023), this type of
value grounding errors take up 47% of the errors
made by PoT. Moreover, correcting these errors
requires manual efforts to look into the contents of
the table, which is time-consuming when the table
is large.

On the contrary, Figure 10 shows an example
question that only requires a single cell from the
table. PoT correctly selects the answer but our

Binder:
SELECT `first issued` FROM t1 ORDER BY
LENGTH(QA("map@alphanumeric digits"; CONCAT(`serial
format`, `serials issued`))) DESC LIMIT 1

Question: name the year of the license plate that has the largest amount of

alphanumeric digits

row_id first issued serials format serials issued

0 1955 a-12345 none

1 1958 abc-123 aaa-1 to bzz-999

…

9 2008 abc1234 aaa0001 to present

Ours:
Step 1: How many alphanumeric digits are there in the serial format?
Step 2: Augmented table:

row_id first issued
serials
format

serials
issued

alphanumeric_digits

0 1955 a-12345 none 6

1 1958 abc-123
aaa-1 to

bzz-999
6

…

9 2008 abc1234
aaa0001 to

present
7

(sqlite3.OperationalError) near "CONCAT": syntax error

Execution result: 2008 ✓

Step 3:
SELECT `first issued` FROM t1 ORDER BY
`alphanumeric_digits` DESC LIMIT 1

Figure 5: An example question in WIKITQ. Binder
generates a SQL statement that queries LLMs for un-
solvable parts. However, the statement leads to an ex-
ecution error. Our method augments the table with an
additional column and correctly generates a SQL state-
ment to answer the question.

method selects the value in the wrong column.
However, correcting this error requires only manual
inspection of the generated SQL statement, which
is much more efficient than checking the whole
table contents.

Binder:
SELECT ABS(QA("map@date of creation"; `time created`
WHERE `map or catalog` = '5 star prediction device')
- QA("map@date of creation"; `time created` WHERE
`map or catalog` = 'han comet diagrams'))

Question: what is the difference between the five star prediction device’s date

of creation and the han comet diagrams’ date of creation?

row_id Time created map or catalog

0 1000 bc wu xian star map

1 168 bc 5 star prediction device

…

133 193 bc han comet diagrams

Ours:
Step 1: None
Step 2: None

(sqlite3.OperationalError) near "`time created`":
syntax error

Binder-separate:
Added column: None

Execution result: 25 ✓

Execution result: 25 ✓

SQL:
SELECT ABS(
 (SELECT `time created` FROM t1 WHERE `map or catalog`
= '5 star prediction device') -
 (SELECT `time created` FROM t1 WHERE `map or catalog`
= 'han comet diagrams'))

Step 3:
SELECT ABS(
 (SELECT `time created` FROM t1 WHERE `map or catalog`
= '5 star prediction device') -
 (SELECT `time created` FROM t1 WHERE `map or catalog`
= 'han comet diagrams'))

Figure 6: An example question in WIKITQ. Binder
generates a SQL statement that queries LLMs. However,
the statement leads to an execution error. Our method
and Binder-separate correctly generate a pure SQL
statement to answer the question.

SQL:
SELECT DISTINCT `driver`, `nationality` FROM t1 WHERE
`driver` = 'jarno trulli'

Binder:
SELECT 'jarno trulli' FROM t1 WHERE `driver` =
'jarno trulli’

Question: jarno trulli was not french but what nationality?

row_id pos driver points

0 1 fernando alonso 10.0

1 2 jarno trulli 8.0

…

19 ret patrick friesacher nan

Ours:
Step 1: What is the nationality?
Step 2: Augmented table:

(sqlite3.OperationalError) no such column: nationality

Execution result: jarno trulli ✘
Binder-separate:
Added column: None

row_id pos driver points nationality

0 1 fernando alonso 10.0 spanish

1 2 jarno trulli 8.0 italian

…

19 ret patrick friesacher nan austrian

Execution result: italian ✓

Step 3:
SELECT `nationality` FROM t1 WHERE `driver` =
'jarno trulli'

Figure 7: An example question in WIKITQ. Binder
generates a SQL statement without syntax error, but it
does not query LLMs for additional knowledge, result-
ing in a wrong answer. Since the original SQL state-
ment generated by Binder does not augment the table
with additional information, the question is not answer-
able using pure SQL, leading to an execution error in
Binder-separate. Our method augments the table and
correctly answers the question.

Question: by what percent did the balance of tax benefits increase between the

beginning of 2016 and the end of 2018?

Program-of-Thought:
balance_beginning_2016 = 166.8
balance_end_2018 = 127.1
percent_increase = ((balance_end_2018 -
balance_beginning_2016) / balance_beginning_2016) * 100
ans = percent_increase

row_id 2018 2017 2016

0
balance at beginning of

fiscal year
148.9 166.8 106.6

1
additions related to purchase

accounting (1)
3.4 7.7 16.5

…

8 balance at end of fiscal year 127.1 148.9 166.8

Ours:
SELECT
 ((SELECT `2018` FROM t1 WHERE `row_id` = 8)
 -
 (SELECT `2016` FROM t1 WHERE `row_id` = 0))
 /
 (SELECT `2016` FROM t1 WHERE `row_id` = 0) * 100

Execution result: 19.23 ✓

Execution result: -23.80 ✘

Figure 8: An example question in FINQA that requires
two table cells to answer. PoT retrieves the wrong value
(highlighted in red) from the table, despite generating
a program with correct logic. Identifying the error re-
quires looking into the table contents manually. Our
method correctly selects the values and answers the
question.

Program-of-Thought:
net_deferred_tax_assets_2018 = 26062
net_deferred_tax_assets_2019 = 83615
ans = (net_deferred_tax_assets_2019 -
net_deferred_tax_assets_2018) /
abs(net_deferred_tax_assets_2018) * 100

Question: What was the percentage change in the Net deferred tax assets (liabilities)

between 2018 and 2019?

row_id 2019 2018

0 deferred tax assets: none none

12 total deferred tax assets 83615 26062

…

18
net deferred tax assets

(liabilities)
48218 -1221

Execution result: -4049.06 ✓

Execution result: 220.83 ✘
Ours:
SELECT
 ((CAST(`2019` AS REAL) - CAST(`2018` AS REAL)) /
CAST(`2018` AS REAL)) * 100 AS percentage_change
FROM t1
WHERE `row_id` = 18

Figure 9: An example question in TATQA that requires
two table cells to answer. PoT retrieves the wrong value
(highlighted in red) from the table, despite generating
a program with correct logic. Our method correctly
selects the values and answers the question.

Program-of-Thought:
product_revenue_variance_2019_vs_2018 = 2296

Question: What was the product revenue variance in dollars for 2019 vs 2018?

row_id
july 27, 2019

(1)
2019 vs. 2018

(variance in dollars)

0 revenue: none none

12 product 39005 2296

…

5 total 51904 2574

Execution result: 39005 ✘

Execution result: 2296 ✓
Ours:
SELECT `july 27, 2019 (1)` FROM t1 WHERE `row_id` = 1

Figure 10: An example question in TATQA that re-
quires a single table cell to answer. PoT correctly re-
trieves the value from the table. Our method mistakenly
selects the value. However, the error is easy to be spot-
ted and corrected by inspecting the SQL statement.

Task Description:
Your task is to prepare a table for SQL query generation in order to answer a specific
question. This may require modifying the table by adding extra columns. These new
columns are created based on natural language questions , with each question applied
individually to every row in the existing columns. The goal is to transform existing
data into a format that 's suitable for SQL operations , or to incorporate additional
information into the table.

Procedure:
1. Evaluate the Table and Question: Assess if the table , in its current format , is
suitable for generating a SQL query to answer the given question.
2. Determine Additional Columns:

- If the table is already suitable for the SQL query , simply output "None"
- If the table requires modifications , identify and define the necessary changes.

Specifically , add new columns where each row 's value is derived from a natural language
question applied to the relevant columns. Use the format:

`new_column ` = @(" question "; [relevant_columns]),
where `question ` is the question asked for each row to derive the new column 's

contents , and `relevant_columns ` are the existing columns that provide the information
needed for the question.

Response Format:
Begin your response with "Transformation :" and include:
- Solution outline: Describe a step -by-step reasoning chain of how to answer the
question.
- Further analysis: Determine if modifications are required for each step.
- Final output: List each required additional column in the specified format , each on a
new line. If no modifications are needed , output "None".

Figure 11: System prompt used for augmentation generation (Step 1) on WIKITQ.

Title: 2007 New Orleans Saints season
CREATE TABLE t1(

row_id int ,
date text ,
game site text ,
result/score text)

/*
3 example rows:
SELECT * FROM t1 LIMIT 3;
row_id date game site result/score
0 2007-9-6 rca dome l 41-10
1 2007-9-16 raymond james stadium l 31-14
2 2007-9-24 louisiana superdome l 31-14
*/

Q: what number of games were lost at home?
Transformation:
Solution outline:
1. Find the losing games.
2. Find the games at home.
3. Count the number of games that satisfy both conditions.
Further analysis:
For step 1, we need information in `result/score ` column. We need to parse if it 's a win
or loss. We will add a column called `is_loss `.

For step 2, we need information in `game site ` column. We need additional information on
whether it's a home game or not. We will add a column called `is_home_game `.

Step 3 can be done with a SQL query.
Final output:
`is_loss ` = @("Is it a loss ?"; [result/score])
`is_home_game ` = @("Is it the home court of New Orleans Saints ?"; [game site])

Figure 12: A demonstration of the in-context example used for augmentation generation (Step 1) on WIKITQ.

Give a database as shown below:
Table: 1963 International Gold Cup
/*
row_id driver
0 jim clark
1 richie ginther
2 graham hill
3 jack brabham
4 tony maggs
*/
Q: Answer question "What is his/her country ?" row by row.
Output:
/*
row_id driver
0 jim clark scotland
1 richie ginther united states
2 graham hill england
3 jack brabham australia
4 tony maggs south africa
*/

Figure 13: A demonstration of the in-context example used for querying additional information (Step 2) from LLMs
on WIKITQ.

Read the following table and write a SQL query to answer the question:
Title: 2007 New Orleans Saints season
CREATE TABLE t1(

row_id int ,
date text ,
game site text ,
result/score text ,
is_loss text ,
is_home_game text)

/*
3 example rows:
SELECT * FROM t1 LIMIT 3;
row_id date game site result/score is_loss is_home_game
0 2007-9-6 rca dome l 41-10 yes no
1 2007-9-16 raymond james stadium l 31-14 yes no
2 2007-9-24 louisiana superdome l 31-14 yes yes
*/

Q: what number of games were lost at home?
SQL: To answer the question , we need following steps:
1. Find the losing games by `is_loss ` column.
2. Find the games at home by `is_home_game ` column.
3. Count the number of games that satisfy both conditions.
Final SQL query:
```
SELECT COUNT (*) FROM t1 WHERE `is_loss ` = 'yes ' AND `is_home_game ` = 'yes '
```

Figure 14: A demonstration of the in-context example used for SQL generation (Step 3) on WIKITQ.

Task Description:
You are tasked with analyzing a provided table and an accompanying report to answer a
specific question. This involves assessing whether the table contains all necessary
information for answering the question. If additional information is needed , you must
extract this from the report and create a supplementary table. Your primary focus is on
the analysis and information extraction process , which will facilitate in forming a SQL
query to answer the question.

Procedure:
1. Assess the Given Table and Question: Determine whether the provided table contains
all the required information to answer the question.
2. Extract Information for Additional Table Creation:

- If the existing table is sufficient , simply output "None"
- If the existing table lacks essential information , extract the required data from

the report in the following JSON format: `{"column_name ": [value1 , ...], ...}`

Each example is given in the following structure:
- Report: Contents of the report that may contain additional information.
- Tables: Contents of the table , with columns separated by " | " and rows by "\n".
- Question: The specific question that needs to be answered.

Response Format:
Begin your response with "Analysis :" and include:
- Solution outline: Describe the step -by-step outline for answering the question.
- Further analysis: Determine whether each step 's information is available in the
existing table or needs to be extracted from the report.
- Final output: Extract necessary information from the report in JSON format as
described above; if no additional information is needed , output "None".

Notes:
- You may extract information with any number of columns and rows. However , all columns
should have the same number of values.
- Make the JSON self -explanatory. Use descriptive column names , add context where needed
, and include units in column names to prevent ambiguity.
- Avoid creating columns with empty or NaN values.

Figure 15: System prompt used for constructing augmenting table (Steps 1 and 2) on TATQA.

Report:
NOTE 5 - PROPERTY AND EQUIPMENT
The Company owned equipment recorded at cost , which consisted of the following as of
December 31, 2019 and 2018:
Depreciation expense was $80 ,206 and $58 ,423 for the years ended December 31, 2019 and
2018, respectively
Tables:
row_id | filledcolumnname | 2019 | 2018
0 | computer equipment | 137763 | 94384
1 | furniture and fixtures | 187167 | 159648
2 | subtotal | 324930 | 254032
3 | less accumulated depreciation | 148916 | 104702
4 | property and equipment , net | 176014 | 149330

Question: What is the ratio of depreciation expense to accumulated depreciation of
property and equipment in 2019?
Analysis:
Solution outline:
1. Find the amount of depreciation expense and accumulated depreciation of property and
equipment in 2019.
2. Calculate the ratio.
Further analysis:
For step 1, the accumulated depreciation is mentioned in the table in row 3. But the
depreciation expense is missing from the table. So we need to extract it from the report
.
Step 2 can be done with a SQL query.
Final output:
{" depreciation_expense_2019 ": ["$80 ,206"]}

Figure 16: A demonstration of the in-context example used for constructing augmenting table (Steps 1 and 2) on
TATQA.

Report:
NOTE 5 - PROPERTY AND EQUIPMENT The Company owned equipment recorded at cost , which
consisted of the following as of December 31, 2019 and 2018: Depreciation expense was
$80 ,206 and $58 ,423 for the years ended December 31, 2019 and 2018, respectively
Tables:
CREATE TABLE t1(

row_id int ,
filledcolumnname text ,
2019 int ,
2018 int)

/*
All rows of the table:
SELECT * FROM t1;
row_id filledcolumnname 2019 2018
0 computer equipment 137763 94384
1 furniture and fixtures 187167 159648
2 subtotal 324930 254032
3 less accumulated depreciation 148916 104702
4 property and equipment , net 176014 149330
*/

CREATE TABLE t2(
row_id int ,
depreciation_expense_2019 int)

/*
All rows of the table:
SELECT * FROM t2;
row_id depreciation_expense_2019
0 80206
*/

Q: What is the ratio of depreciation expense to accumulated depreciation of property and
equipment in 2019?

SQL: Reasoning process:
We need following steps to answer the question:
1. Get the depreciation expense in 2019 from t2.
2. Get the accumulated depreciation in 2019 from t1, which is in row 3.
3. Calculate the ratio.
Final SQL query:
```
SELECT

(SELECT `depreciation_expense_2019 ` FROM t2 WHERE `row_id ` = 0) /
CAST(( SELECT `2019` FROM t1 WHERE `row_id ` = 3) AS REAL)
AS depreciation_ratio

FROM t1
LIMIT 1
```
Units: ""

Figure 17: A demonstration of the in-context example used for SQL generation (Step 3) on TATQA.

Task Procedure:
1. Assess the Given Table and Question: Determine whether the provided table contains
all the required information to answer the question.
2. Extract Missing Information from Report:

- If the existing table is sufficient , simply output "None"
- If the existing table lacks essential information , extract the required data from

the report in the following JSON format: `{"column_name ": [value1 , ...], ...}`

Each example is given in the following structure:
- Report: Contents of the report that may contain additional information.
- Tables: Contents of the table , with columns separated by " | " and rows by "\n".
- Question: The specific question that needs to be answered.

Response Format:
Begin your response with "Analysis :" and include:
- Solution formula: Write a formula to calculate the answer.
- Further analysis: Determine for each variable in the formula whether it is available
in the table or needs to be extracted from the report.
- Final output: For variables not in the table , extract them from report in JSON format
as described above; if all variables are in the table , output "None".

Notes:
- Make the JSON self -explanatory. Use descriptive column names and include units in
column names to prevent ambiguity.

Figure 18: System prompt used for constructing augmenting table (Steps 1 and 2) on FINQA.

Report:
purchases of equity securities 2013 during 2014 , we repurchased 33035204 shares of our
common stock at an average price of $ 100.24 .
[b] effective january 1 , 2014 , our board of directors authorized the repurchase of up
to 120 million shares of our common stock by december 31 , 2017 .
Tables:
row_id | period | total number ofsharespurchased[a] | averageprice paidpershare | total
number of sharespurchased as part of apublicly announcedplan or program [b] | maximum
number ofshares that may yetbe purchased under the planor program [b]
0 | oct . 1 through oct . 31 | 3087549 | 107.59 | 3075000 | 92618000
1 | nov . 1 through nov . 30 | 1877330 | 119.84 | 1875000 | 90743000
2 | dec . 1 through dec . 31 | 2787108 | 116.54 | 2786400 | 87956600
3 | total | 7751987 | 113.77 | 7736400 | n/a

Question: what percent of the share repurchases were in the fourth quarter?
Analysis:
Solution formula:
share_repurchase_fourth_quarter / share_repurchase_whole_year
Further analysis:
share_repurchase_fourth_quarter is in row 3 of the table
share_repurchase_whole_year is not in the table , so we need to extract it from the
report
Final output:
{" share_repurchase_whole_year ": [33035204]}

Figure 19: A demonstration of the in-context example used for constructing augmenting table (Steps 1 and 2) on
FINQA.

Report:
purchases of equity securities 2013 during 2014 , we repurchased 33035204 shares of our
common stock at an average price of $ 100.24 .
[b] effective january 1 , 2014 , our board of directors authorized the repurchase of up
to 120 million shares of our common stock by december 31 , 2017 .
Tables:
CREATE TABLE t1(

row_id int ,
period text ,
total number ofsharespurchased[a] int ,
averageprice paidpershare real ,
total number of sharespurchased as part of apublicly announcedplan or program [b]
int ,
maximum number ofshares that may yetbe purchased under the planor program [b] text)

/*
All rows of the table:
SELECT * FROM t1;
row_id period total number ofsharespurchased[a] averageprice paidpershare
total number of sharespurchased as part of apublicly announcedplan or program [b]
maximum number ofshares that may yetbe purchased under the planor program [b]
0 oct . 1 through oct . 31 3087549 107.59 3075000 92618000
1 nov . 1 through nov . 30 1877330 119.84 1875000 90743000
2 dec . 1 through dec . 31 2787108 116.54 2786400 87956600
3 total 7751987 113.77 7736400 n/a
*/

CREATE TABLE t2(
row_id int ,
share_repurchase_whole_year int)

/*
All rows of the table:
SELECT * FROM t2;
row_id share_repurchase_whole_year
0 33035204
*/

Q: what percent of the share repurchases were in the fourth quarter?
SQL:
Solution formula:
share_repurchase_fourth_quarter / share_repurchase_whole_year
Further analysis:
share_repurchase_fourth_quarter is in row 3, column `total number ofsharespurchased[a]`
of t1
share_repurchase_whole_year is in row 0, column `share_repurchase_whole_year ` of t2
Final SQL query:
```
SELECT

CAST(( SELECT `total number ofsharespurchased[a]` FROM t1 WHERE `row_id ` = 3) AS REAL
) /
(SELECT `share_repurchase_whole_year ` FROM t2 WHERE `row_id ` = 0) * 100

```

Figure 20: A demonstration of the in-context example used for SQL generation (Step 3) on FINQA.

	Introduction
	Related work
	Methodology
	Problem Formulation
	Overall Framework

	Experiments
	Experiments Setup
	Open-Domain Knowledge
	Closed-Domain Knowledge

	Conclusion
	Limitation
	Implementation Details
	Open-domain Knowledge
	Closed-domain Knowledge

	Comparison with Chain-of-Table
	Additional Examples
	Comparison with Binder
	Comparison with PoT

