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Abstract
Uncertainty decomposition refers to the task of
decomposing the total uncertainty of a model
into data (aleatoric) uncertainty, resulting from
the inherent complexity or ambiguity of the
data, and model (epistemic) uncertainty, result-
ing from the lack of knowledge in the model.
Performing uncertainty decomposition for large
language models (LLMs) is an important step
toward improving the reliability, trustworthi-
ness, and interpretability of LLMs, but this re-
search task is very challenging and remains
unresolved. The existing canonical method,
Bayesian Neural Network (BNN), cannot be
applied to LLMs, because BNN requires train-
ing and ensembling multiple variants of mod-
els, which is infeasible or prohibitively expen-
sive for LLMs. In this paper, we introduce
an uncertainty decomposition framework for
LLMs, called input clarifications ensemble,
which bypasses the need to train new mod-
els. Rather than ensembling models with dif-
ferent parameters, our approach generates a
set of clarifications for the input, feeds them
into the fixed LLMs, and ensembles the corre-
sponding predictions. We show that our frame-
work shares a symmetric decomposition struc-
ture with BNN. Empirical evaluations demon-
strate that the proposed framework provides
accurate and reliable uncertainty quantifica-
tion on various tasks. Code will be made
publicly available at https://github.com/
UCSB-NLP-Chang/llm_uncertainty.

1 Introduction

With the wide application of Large language mod-
els (LLMs), it becomes crucial that the predictions
of LLMs are trustworthy. One critical dimension
of the trustworthiness of LLMs is the ability to
indicate when their generations are reliable and
correct, which falls into the topic of uncertainty
quantification (UQ). As an effective risk assess-
ment method, uncertainty quantification aims to
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measure the confidence level of neural networks
on their predictions (Gal et al., 2016; Bhatt et al.,
2021; Hüllermeier and Waegeman, 2021). A higher
uncertainty implies the output of LLMs should be
rejected or need further evaluation. The quality
of uncertainty quantification is also influenced by
how close the prediction confidence measure cor-
responds to the actual accuracy (i.e., whether the
model is well-calibrated).

Quantifying the total uncertainty for LLMs
has received increasing research attention. Ex-
isting work observes that LLMs are relatively
well-calibrated by ensembling multiple reasoning
chains (Wang et al., 2022; Huang et al., 2022; Si
et al., 2023), ensembling different prompts (Jiang
et al., 2023), or prompting the LLMs to output their
confidence levels (Kadavath et al., 2022; Lin et al.,
2022; Tian et al., 2023). Besides these observations,
several methods have been proposed to quantify the
uncertainty of LLMs (Lin et al., 2022; Xiao et al.,
2022; Kuhn et al., 2022; Lin et al., 2023; Duan
et al., 2023; Huang et al., 2023; Park and Kim,
2023; Ren et al., 2023). An accurate quantification
of the uncertainty can be used for various appli-
cations, such as out-of-distribution detection and
misclassified data detection.

However, measuring the total uncertainty is just
the first step towards understanding the uncertainty
of LLM prediction. In order to draw a more holistic
view of LLM’s uncertainty structure, one would
also need to understand different types of uncer-
tainty and decompose the source into these types,
a problem we refer to as uncertainty decomposi-
tion. Specifically, the total uncertainty can be de-
composed into two categories of uncertainty, data
(aleatoric) uncertainty and model (epistemic) un-
certainty. Model uncertainty arises when the model
lacks the knowledge to produce the correct output.
For example, the question ‘What is 2+3?’ requires
the knowledge of algebraic operations. Without
such knowledge, the uncertainty will be high.
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On the other hand, the data uncertainty arises
from the inherent complexities and ambiguities of
data examples, such as ambiguous questions (Min
et al., 2020; Guo et al., 2021; Kuhn et al., 2023) and
unclear task instructions (Tamkin et al., 2022), and
is irreducible no matter how well the model learns.
For example, to answer the question ‘Who is the
president of this country?’, without any context,
the uncertainty would be high regardless of how
well the LLM learns, because the question itself is
ambiguous. Uncertainty decomposition provides
important insights for users to improve the perfor-
mance of LLM. If model uncertainty is high, users
could supply the model with adequate knowledge
through model adaptation, in-context learning, etc;
if the data uncertainty is high, then users should
modify the query to make it more concrete.

However, despite the existing work that stud-
ies the total uncertainty for LLMs, decomposing
the uncertainty for LLMs remains understudied.
Furthermore, existing methods for uncertainty de-
composition cannot be directly applied, due to the
black-box nature of LLMs and their prohibitive
sizes. Bayesian Neural Network (BNN) (Gal and
Ghahramani, 2016; Lakshminarayanan et al., 2017;
Maddox et al., 2019), decomposes the uncertainty
by training different variants of models, e.g., by
having different random seeds, drop-out rates etc.,
to minimize the model uncertainty in the target
task and then ensembling them. However, train-
ing multiple variants of LLMs such as GPT-4 and
PaLM-2 will be either infeasible or extremely ex-
pensive. Given these challenges, we aim to address
the following question: How to develop an effec-
tive uncertainty quantification framework that can
decompose the uncertainty for LLMs?

In this paper, we propose an alternative frame-
work for uncertainty decomposition, called input
clarification ensemble, which is almost symmet-
rical to BNNs but can bypass the need to modify
LLM parameters. In particular, we notice that, al-
though it is very challenging to modify LLM’s
parameters, it is relatively easy to manipulate the
input to LLMs. Inspired by this, rather than en-
sembling different model variants that minimize
the model uncertainty, we introduce a set of input
clarifications, which, when appended to the input,
can minimize the data uncertainty. We then ensem-
ble the LLM’s predictions under different clarifica-
tions. Figure 1 shows the general pipeline. Unlike
the BNN method that ensembles the predictions
of several different models, the proposed method
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Figure 1: Overview of the proposed uncertainty quan-
tification method.

leverage input clarification ensemble to quantify
the uncertainty. For example, for the question ‘Who
is the president of this country?’, a possible clarifi-
cation is ‘This country refers to the US.’ By ruling
out the data uncertainty by clarification, we can as-
cribe the remaining uncertainty of each individual
prediction to model uncertainty. Furthermore, by
measuring the disagreement of the model predic-
tions under different clarifications, we can gauge
the data uncertainty. Our experiments verify that
the proposed method provide accurate uncertainty
quantification results on both total uncertainty and
its decomposition.

2 Related Work

In this section, we will discuss the existing work
for uncertainty quantification.

2.1 Related Work
Uncertainty quantification. Uncertainty quan-
tification for machine learning models has been
widely studied to quantify the reliability of model
predictions (Gal et al., 2016; Gal and Ghahramani,
2016; Malinin and Gales, 2018; Ovadia et al., 2019;
Malinin et al., 2020; Lin et al., 2022; Kuhn et al.,
2022; Lin et al., 2023). Various reasons can cause
uncertainty in model predictions, such as lack of
knowledge and noisy data. Given the total uncer-
tainty in model predictions, one can further de-
compose it into model uncertainty (due to lack of
knowledge in the model) and data uncertainty (due
to the inherent randomness and noise in data).

Depending on how the uncertainty is obtained,
existing uncertainty quantification methods can



be categorized into intrinsic and extrinsic meth-
ods. Intrinsic methods adopt machine learning
models to provide an inherent uncertainty esti-
mate, such as Bayesian approaches and determin-
istic approaches (Malinin and Gales, 2018). The
Bayesian approaches (Blundell et al., 2015; Gal
and Ghahramani, 2016; Teye et al., 2018; Mobiny
et al., 2021; Lakshminarayanan et al., 2017; Ma-
linin et al., 2020; He et al., 2020) can quantify
both data and model uncertainty. In comparison,
extrinsic methods quantify the uncertainty in a post-
hoc manner using auxiliary models (Kristiadi et al.,
2021; Lahlou et al., 2022). Our method belongs to
the intrinsic methods and is directly motivated by
the Bayesian neural networks.

Uncertainty Quantification and Model Calibra-
tion for LLMs With the wide application of
LLMs, how to accurately quantify the prediction
uncertainty has also drawn attention (Xiao et al.,
2022; Lin et al., 2022; Mielke et al., 2022; Zhou
et al., 2023; Huang et al., 2023; Duan et al., 2023;
Chen and Mueller, 2023). Additional challenges
have been introduced since LLMs are more applied
in generative tasks, which makes the output dis-
tribution measurement more difficult (Ott et al.,
2018; Malinin and Gales, 2020). Semantic Uncer-
tainty (Kuhn et al., 2022) has been proposed to
alleviate the unstructured output space of LLMs for
better uncertainty quantification. Lin et al. (2023)
also aims to address the unstructured output space.
Although there have been some explorations in this
direction, existing methods can only estimate the
total uncertainty. In comparison, we propose a
more principled framework that can both quantify
the total uncertainty and decompose it into data un-
certainty and model uncertainty, leading to a more
fine-grained understanding of LLMs.

Another line of research is the model calibra-
tion for LLMs. Model calibration is the process of
ensuring that the predicted probabilities or confi-
dence scores from a machine learning model align
with the true probabilities or likelihoods of events
occurring (i.e., the prediction is correct). Well-
calibrated model predictions help improve the reli-
ability of uncertainty quantification. Based on ex-
isting model calibration methods (Hendrycks and
Gimpel, 2016; Guo et al., 2017; Ovadia et al., 2019;
Riquelme et al., 2018; Desai and Durrett, 2020),
prior work (Huang et al., 2022; Jiang et al., 2023,
2021; Ye and Durrett, 2022) has shown that LLMs
are relatively well-calibrated on factual QA and

complex reasoning tasks by properly prompting
them. Specifically, Kadavath et al. (2022); Tian
et al. (2023) estimate the prediction confidence of
LLMs by prompting LLMs to output their confi-
dence of their answers. For complex reasoning
tasks, LLMs may output both the reasoning chains
and the final answer. To estimate the confidence
score, previous approaches (Huang et al., 2022)
sample multiple outputs for the input question and
use the answer frequency to indicate the confidence.
Researchers further ensemble multiple prompts for
better calibration performance (Jiang et al., 2023).
Our uncertainty quantification is based on the well-
calibrated predictions of LLMs, which lead to a
more precise and accurate quantification result.

3 Methodology

3.1 Notations and Problem Formulation

Denote X and Y as the input and output target of
a given task, respectively, and θ as the parameters
of an LLM. Denote p(Y |X) and q(Y |X,θ) as the
ground-truth and predicted distribution of Y given
X.

We then introduce three uncertainty concepts.
First, the total uncertainty is defined as the en-
tropy of the predicted distribution, i.e., Utotal =

H(q(Y |X;θ)). If the overall uncertainty is high,
then it means the LLM has low confidence in its
output. The total uncertainty can be further decom-
posed into two different types of uncertainties.

The first type of uncertainty is referred to as the
model uncertainty, which characterizes how well
the LLM approaches the ground truth distribution,
and thus learns the knowledge therein. For exam-
ple, to answer ‘What is 2+3?’, if the LLM were
able to learn the true knowledge of the algebraic op-
eration, it would be able to answer with certainty;
otherwise, the uncertainty would be high.

The second type of uncertainty is referred to
as the data uncertainty, which characterizes the
fundamental uncertainty residing in the ground-
truth distribution, and is irreducible no matter how
well the LLM learns. For example, to answer ‘Who
is the president of this country?’, even if the LLM
were well acquainted with politics, it still could
not answer it confidently, because this question
is inherently ambiguous. The data uncertainty is
often quantified by the entropy in the ground-truth
distribution, i.e., H(p(Y |X)).

The goal of this paper is to estimate both the
model and data uncertainties in LLMs.



3.2 Background: Bayesian Neural Networks
One possible solution to our task is to apply the
canonical Bayesian Neural Network (BNN) ap-
proach, which is a standard approach to uncertainty
decomposition. Instead of having one set of param-
eters, BNN ensembles k models, each parameter-
ized as θ(k). Each of the k models seeks to minimize
the training loss,usually the cross entropy loss for
classification tasks, which is equivalent to solving
the following optimization problem

min
θ

KL(p(Y |X)∥q(Y |X,θ))). (1)

However, different models have slightly different
hyperparameter settings, such as initialization val-
ues, dropout weights, architectures, etc., and thus
the optimized values, {θ(k)}, are different across
different k’s. Denote the resulting distribution of
{θ(k)} as p(θ|D) where D is the training dataset.
Then the ensembled distribution of BNN can be
represented as q(Y |X) = Eq(θ|D)[q(Y |X,θ)].

BNN decomposes the uncertainty as

H(q(Y |X)) = Iq(Y ,θ|X)︸ ︷︷ ︸
①

+Eq(θ|D)H(q(Y |X,θ))︸ ︷︷ ︸
②

,

(2)

where Iq denotes the mutual information under
the q distribution. ① measures the disagreement
among the different models; ② measures the aver-
age uncertainty of each individual model. Under
certain assumptions, ① and ② can approximate
the model and data uncertainties, respectively (Gal
et al., 2016). An illustration of the BNN framework
is shown in the upper panel of Figure 1.

Here is an intuitive explanation of why this is the
case. According to Eq. 1, the goal of each model
is to approach the ground-truth distribution, and
thus can be viewed as the process of reducing the
model uncertainty. Therefore, if the optimization
is successful, all the models will learn the true dis-
tribution, i.e., q(Y |X,θ(k)) = p(Y |X), ∀k, which, by
definition, results in zero model uncertainty. Mean-
while, ① will also be zero because all the models
produce the same prediction. Thus ① equals model
uncertainty in this case. ② would also equal the
data uncertainty because the predicted distribution
is equal to the true distribution.

On the other hand, if the models fail to learn the
true distribution, in which case the model uncer-
tainty will be large, ① will also be large because
different models have different hyperparameter set-
tings and will be stuck in very different local op-
tima.

3.3 Does BNN work for LLMs?
Our goal of decomposing uncertainty for LLMs
would be easily achieved if the BNN framework
were readily applicable to LLMs. Unfortunately,
this is not the case, because the key to the success
of BNNs is the learning process in Eq. 1, which is
very challenging for LLMs. Specifically, there are
two types of methods for adapting LLMs to a partic-
ular task, supervised fine-tuning and prompting/in-
context learning. Directly fine-tuning the model
according to Eq. 1 is usually infeasible due to the
limited access to model parameters and its huge re-
quirement for computation. Even if it is feasible, it
would be very time-consuming because it requires
fine-tuning multiple LLMs.

On the other hand, the in-context learning
method, though feasible, does not fit into the BNN
framework because it does not directly aim to op-
timize Eq. 1, so the decomposition will be very
inaccurate. To demonstrate this, we perform a sim-
ple experiment on the AmbigQA (Min et al., 2020)
dataset, which contains both ambiguous questions
with multiple answers and unambiguous questions.
We use the BNN method to decompose the uncer-
tainty of ChatGPT, where the different individual
model is derived by providing different in-context
examples. If the decomposition method is accurate,
we would expect to see that the data uncertainty for
the ambiguous questions is significantly larger than
that of the unambiguous ones. However, as shown
in Figure 2, the gap between the uncertainties of
the two groups of questions is very small. More
experiment details can be found in Section 4.
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Figure 2: Data uncertainty distribution on the
AmbigQA (Min et al., 2020) dataset using the BNN
method. We use kernel density estimation to smooth the
frequency distribution histogram. BNN is achieved by
ensembling different in-context examples.

Although the BNN framework does not work
for LLMs, it inspires us to design an alternative
framework that is almost completely symmetrical



to BNN, which we will introduce in the next sub-
section.

3.4 Input Clarification Ensembling
Although modifying or adapting LLM models is
challenging, it is relatively straightforward to mod-
ify the input to LLMs. Now that BNN works by
ensembling different models that minimize model
uncertainty (Eq. 1), can we design a framework
that ensembles different inputs that minimize data
uncertainty?

This is the motivation behind our proposed
framework, which consists of the following two
steps.
Step 1: Input Clarification. Given an input X,
we first generate a set of texts, C(k), called clarifi-
cations. Each clarification C(k) seeks to minimize
the ambiguity in X (and thus the data uncertainty)
when appended to X. Formally,

min
C

H(p(Y |X ⊕C)), (3)

where ⊕ denotes concatenation. In the aforemen-
tioned example, ‘Who is the president of this coun-
try?’, possible clarifications include ‘This country
refers to the US.’ and many other countries. Since
there can be many clarifications, {C(k)} is a set.
Step 2: Ensemble. Define q(C|X) as the distri-
bution of the clarification given a particular input.
The predicted distribution is derived by ensembling
the predictions conditional on each clarified input,
i.e., q(Y |X) = Eq(C|X)[q(Y |X⊕C,θ)]. Note that the
model parameters, θ, are kept constant, and thus
will be omitted from the condition for brevity.

We then propose to decompose the uncertainty
of the ensembled model as

H(q(Y |X)) = Iq(Y ,C|X)︸ ︷︷ ︸
①′

+Eq(C|X)H(q(Y |X ⊕C))︸ ︷︷ ︸
②′

.

(4)

We claim that ①′ and ②′ can approximate the data
and model uncertainties, respectively. An illustra-
tion of the proposed framework is shown in the
lower panel of Figure 1.

By comparing Eqs. 3 and 4 against Eqs. 1 and
2, we can notice the symmetry between our frame-
work and BNN’s — BNN seeks to pin down model
uncertainty whereas ours data uncertainty; Eq. 4
takes almost an identical form to Eq. 2 but the cor-
responding uncertainties are swapped. Figure 1
also shows such symmetry.

Accordingly, the same explanation of why it
works applies here. When the input is already

very clear, and hence data uncertainty is low, the
clarifications will be identically empty, so ①′ will
approach zero. When the input is very ambigu-
ous, the clarifications will be very different (think
about the aforementioned president example), and
so would the answers produced with different clari-
fications. In this case, ①′ will be very high. On the
other hand, ②′ measures the average uncertainty on
clarified input, which rules out most of the data un-
certainty, so the remaining uncertainty can mostly
be ascribed to model uncertainty.

3.5 Input Clarification
Unlike in conventional neural networks, the input
to LLMs usually contains multiple components,
including instructions, in-context examples, ques-
tions etc. Therefore, we can separately measure the
data uncertainties of different input components by
clarifying only the corresponding components. For
example, to measure the data uncertainty result-
ing from ambiguous instructions, we can clarify
only the instruction. In this work, we will focus
on measuring instruction uncertainty and question
uncertainty, but the framework is readily generaliz-
able to other input components.

To derive clarifications that approximately solve
Eq. 3, we introduce a clarification LLM, where we
provide an instruction and in-context example to
guide the LLM to perform adequate clarification.
Note that the clarification LLM can be different
from the LLM for prediction. In this work, we will
use gpt-3.5-turbo and gpt-4 as the clarification
LLM to ensure the quality of clarification. Further
implementation details are provided in Section 4.

3.6 Improving Performance via Soliciting
Clarifications

Our framework not only provides a way of decom-
posing the uncertainties, but can also enable an
interpretable and more effective human-LLM inter-
action experience. Currently, one of the major ways
for humans to interact with LLMs is by designing
appropriate input. However, the input designed by
humans may not be clear enough to LLMs, often
resulting in undesirable answers given by LLMs.
With the proposed input clarification framework,
we can design an interaction paradigm that allevi-
ates this problem.

Given an input query, we can first gauge the
uncertainties of different input components. If one
of the components, say the instruction, contributes
to high uncertainty (exceeding a threshold), we can



provide feedback to the user that the LLM is not
sure about the answer because the instruction is
ambiguous, along with several clarification options
produced by the clarification LLM for the user to
choose from. This would help the user to perform
directed improvement of the input query and obtain
the desirable answer.

4 Experiments

In this section, we conduct empirical evaluations
to demonstrate the validity and effectiveness of the
proposed method. Specifically, we aims to answer
the following two questions:

1. Can the proposed UQ framework quantify to-
tal uncertainty effectively and correctly?

2. Can the proposed UQ framework decompose
the uncertainty effectively and correctly?

To answer the first question, we conduct the mis-
take detection experiment, which will be intro-
duced in Section 4.2. To answer the second ques-
tion, we conduct three experiments: ambiguity de-
tection, monotonicity check, and recall of correct
answers, which will be presented in Sections 4.3-
4.5, respectively.

4.1 Experiment Configurations

We use gpt-3.5-turbo-0613 as the default LLM
for all experiments. We sample 10 model predic-
tions with temperature 0.5 and use the answer fre-
quency to estimate the output distribution. Since
all the datasets we use are open-ended generation
tasks, different generated answers could have the
exactly same meaning. For example, to answer the
question ‘When did the world’s population reach 7
billion?’, the LLM may generate several different
answers such as ‘December 2017’ and ‘The world’s
population reached 7 billion in December 2017’,
which are essentially the same meaning. Regarding
these two answers as distinct answers can lead to
an overestimation of the entropy of output distribu-
tion. Previous work (Kuhn et al., 2022; Lin et al.,
2023) uses a natural language inference model to
cluster different generated sequences with the same
semantic meanings into one group for better output
distribution estimation. We empirically find that
LLMs can achieve better clustering performance.
Therefore, we prompt the LLM to cluster output an-
swers into different groups for output distribution
estimation on question-answering datasets.

For all the experiments, we introduce the follow-
ing baselines: Semantic Uncertainty (Kuhn et al.,
2022) (denoted as SE) directly computes the en-
tropy of the output distribution as the estimated
(total) uncertainty (named semantic entropy in their
paper). Tian et al. (2023) first queries the LLM for
the answer and then queries the LLM again for the
confidence of the correctness of the answer. We de-
note this method as ASK4CONF. We also slightly
modify the prompt for the ambiguity detection task
to query LLM for the confidence of the ambigu-
ity of the input (denoted as ASK4CONF-D). The
BNN∗ method is implemented by ensembling the
output distributions of multiple different in-context
example sets (we use 5 different sets). We add ∗

here since this method is different from standard
BNN and does not directly optimize Eq. 1. We
provide more details of the prompts used in the
experiments in Appendix A.2.

4.2 Mistake Detection
Correctly quantifying the total uncertainty is the
premise of correctly decomposing the uncertainty.
If the estimated total uncertainty is inaccurate, so
will the estimated data and model uncertainty. A re-
liable total uncertainty measure should have a close
correspondence to the model’s prediction accuracy.
For model predictions whose total uncertainty is
high, the chances that the predictions are incorrect
should also be high. Therefore, we will evaluate the
total uncertainty quantification using the mistake
detection task, following the previous work (Kuhn
et al., 2022; Lin et al., 2023).

Evaluation Settings We evaluate the total un-
certainty on the Natural Question (NQ) dataset
(Kwiatkowski et al., 2019) and GSM8K (Cobbe et al.,
2021). We compute the total uncertainty of each
model and use it to predict whether the model’s
answer is correct. We report the area under the
receiver operator characteristic curve (AUROC) as
well as the best F1 score when using the total un-
certainty to predict the correctness of the model
answer. We use 5-shot in-context examples on the
NQ dataset and 2-shot on the GSM8K dataset with
chain-of-thoughts. For our method, we prompt the
LLM to rephrase the input question to generate the
clarification set. The detailed prompts are listed in
Appendix A.2.

Results The experiment results are shown in Ta-
ble 1, which confirms that the total uncertainty mea-
sured by the proposed approach is reliable. Specif-



Method AUROC F1 Score Entropy (✔) Entropy (✘)

Natural Question

SE 63.8 77.9 0.29 0.56
ASK4CONF 70.4 83.9 - -

BNN∗ 69.7 79.7 0.46 0.88
OURS 72.3 80.2 0.58 1.18

GSM8K

SE 88.2 92.4 0.32 1.46
ASK4CONF 58.1 92.3 - -

BNN∗ 88.3 94.6 0.57 1.94
OURS 89.7 94.7 0.42 1.82

Table 1: Uncertainty quantification for mistake detec-
tion. Entropy (✔) refers to the average total uncertainty
of questions with correct answers, while Entropy (✘)
refers to the average total uncertainty of question with
wrong answers.

ically, we highlight the following observations.
First, our method achieves comparable uncertainty
quantification performance compared to the base-
lines, achieving a similar AUROC and F1 score.
Second, as the proposed method shares a symmetry
form with the BNN method, one would expect the
total uncertainty quantification of the two should
be similar. The above experimental results verify
that the quantification results of these two methods
are very close. Third, although ASK4CONF per-
forms well on factual QA tasks, it provides a poor
uncertainty estimation for the complex reasoning
task (GSM8K), while our method can still provide
good mistake detection performance.

4.3 Ambiguity Detection

Now we can proceed to evaluate whether the de-
composed uncertainty is reliable. As discussed,
one of the main causes of data uncertainty is the
ambiguity of the input. Therefore, we will test how
well the measured data uncertainty is predictive of
whether an input is ambiguous. In particular, we
focus on two input components, the instruction and
the question, and separately predict the ambiguity
within each component using the respective data
uncertainty (see Section 3.5).

Datasets For ambiguity detection of the question,
we select the AmbigQA dataset (Min et al., 2020),
which has annotations on the ambiguity of ques-
tions. The questions in AmbigQA are extracted from
the NQ dataset (Kwiatkowski et al., 2019).

For ambiguity detection of the instruction, since
there is no existing dataset, we created a dataset,
called AmbigInst, where we generated ambiguous
instructions, their disambiguated versions, and the

input-output pairs using ChatGPT via in-context
learning. We further manually verify each gen-
erated instruction. Each instruction is paired with
around 15 questions. Since the focus of AmbigInst
is to detect ambiguous instructions, we did not in-
troduce ambiguity to the paired questions. More de-
tails about AmbigInst can be found in Appendix B.

Evaluation Settings We use 5-shot in-context
examples on the AmbigQA dataset similar to the ex-
periment on the NQ dataset. Since the questions in
AmbigInst are relatively easy and straightforward,
we directly prompt LLMs in a zero-shot setting.
For ambiguous question detection, we perform
clarifications on the input question only. Since
the ambiguities in the AmbigQA dataset sometimes
could be subtle and hard to detect, we retrieve the
most similar 16 questions as in-context examples
when prompting the LLMs to generate clarifica-
tions for a particular input question. Also, we use
gpt-4 as the clarification LLM for the AmbigQA
dataset. The similarity between two questions is
measured by the cosine similarity of their sentence
embeddings from SENTENCE-BERT (Reimers and
Gurevych, 2019). For the AmbigInst dataset, we
directly prompt gpt-3.5-turbo-0613 to generate
instruction clarifications (details in Appendix A.2).
We additionally include the performance of our
method when using ground-truth disambiguation
from the two datasets for reference (denoted as
OURS∗)

The baselines are similar to the methods in the
mistake detection task. The main difference is we
use the quantified uncertainty to predict whether
the input contains ambiguity. Note that we leverage
the data uncertainty for BNN∗ and OURS and the
total uncertainty for SE in this task. Also, BNN∗ is
not included on the AmbigInst dataset since we do
not include in-context examples in the experiments
on that dataset.

Results The experiment results are shown in Ta-
ble 2. We emphasize two observations. First, our
method achieves the best ambiguity detection per-
formance and significantly outperforms the base-
lines. Note that all the baselines, except for BNN∗,
use the total uncertainty for ambiguity detection,
and thus could not disentangle model uncertainty
from the data uncertainty. Therefore, these results
verify the importance of uncertainty decomposi-
tion. Second, the BNN∗ method is not effective in
the black-box LLM setting. As we have discussed
in Section 3.3, simply varying the in-context ex-



Method AUROC F1 Score Avg. DU (✔) Avg. DU (✘)

AmbigQA

SE 54.9 46.8 0.24 0.47
ASK4CONF-D 55.0 64.3 - -

BNN∗ 53.6 53.0 0.13 0.13
OURS 71.7 70.1 0.28 0.67
OURS∗ 89.8 85.6 0.53 1.52

AmbigInst

SE 66.0 53.7 0.07 0.50
ASK4CONF-D 57.9 75.4 - -

OURS 81.3 77.9 0.10 0.75
OURS∗ 96.7 92.6 0.10 1.04

Table 2: Uncertainty quantification for ambiguity detec-
tion. Avg. DU (✔) refers to the average data uncertainty
of unambiguous questions, while Avg. DU (✘) refers to
the average data uncertainty of ambiguous questions.

amples cannot accurately estimate the parameter
posterior distribution, while the proposed frame-
work is specially designed for the black-box LLMs.

Another observation is that ambiguity detection
performance varies across different datasets. On
the AmbigQA dataset (Min et al., 2020), the ambi-
guities are more implicit and hard to find by the
clarification models, which makes the detection
performance relatively low (although still higher
than baselines significantly). Min et al. (2020) also
note that the ambiguity in the dataset is “sometimes
subtle” and “many (ambiguities) are only apparent
after examining one or more Wikipedia pages”. In
comparison, on the AmbigInst dataset where we
design ambiguities to be very explicit, the clarifi-
cation model can generate effective clarifications
for most cases, leading to a good detection perfor-
mance. Finally, the performance of our method
can be further improved when combined with the
ground-truth disambiguation from the two datasets,
demonstrating that the clarification model is still
worth exploring.

4.4 Monotinicity Check

To further evaluate the reliability of our data uncer-
tainty measure, particularly the clarification mod-
ule, we perform a monotonicity check experiment.
Ideally, the clarified input should contribute to a
much lower data uncertainty than the original am-
biguous input. To test this, we perform two rounds
of data uncertainty measuring. In the first round,
we measure the data uncertainty by clarifying the
original input segments (question or instruction). In
the second round, we measure the data uncertainty
of the clarified inputs obtained in the first round.
Our goal is to check whether the data uncertainty
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Figure 3: (Left) Average data uncertainty of the am-
biguous inputs and their clarifications. (Right) Per-
formance improvement via Soliciting clarifications.
AmbigQA-Orig and AmbigInst-Orig refer to the recall
of correct answers when directly answering the origi-
nal input. AmbigQA-Clarify and AmbigInst-Clarify
refer to the recall of correct answers using different
number of input clarifications.

measured in the second round is much smaller than
that in the first round. This experiment is performed
on the AmbigQA and AmbigInst datasets. In both
rounds, we use the same clarification prompt to
generate the clarifications.

Figure 3(a) visualizes the change in uncertainty
on both datasets. As can be observed, the data
uncertainty drops significantly after the input is
clarified, which verifies the effectiveness of the
clarification network.

4.5 Recall of Correct Answers

As discussed in Section 3.6, the proposed frame-
work can be used to improve the performance in
the presence of ambiguous input by asking human
users to choose from a set of clarified versions of
the input. In order to make this happen, our meth-
ods must be able to cover a good proportion of the
possible answers resulting from different clarifica-
tions of a given ambiguous input. Also, the number
of required clarifications should be smaller, as the
users might not want to select the responses from a
large set of choices.

To test this, we use the ambiguous questions and
instructions from AmbigQA and AmbigInst respec-
tively. For each input, we collect all the possible
labeled answers from the ground-truth annotations.
Then we select one answer as the target answer that
the user is asking for. In our pipeline, the LLM will
generate multiple answers given the generated clar-
ifications. Therefore, we inspect how well these
generated answers cover the target answer given
different numbers of clarifications. We separately
compute the recall of the target answer with the
different numbers of clarifications. As a baseline,



we introduce a vanilla version, where we directly
query the LLM with ambiguous input without any
clarification.

The results are illustrated in Figure 3(b). We
can consistently observe an increase of recall given
more clarifications. Similar to the ambiguity detec-
tion performance, the recall improvement on the
AmbigInst dataset is more significant compared to
the AmbigQA dataset, which is due to the subtlety of
the AmbigQA dataset as discussed. Nevertheless, the
proposed clarification framework is able to signif-
icantly improve the answer recall over the vanilla
version without the clarification.

5 Conclusion

In this paper, we focus on the uncertainty quantifi-
cation of LLMs and propose a new framework for
decomposing the uncertainty. With a symmetric
structure of the BNN methods, our framework re-
lies on input clarifications for uncertainty quantifi-
cation, which is more suitable for black-box LLMs.
In the future, we will further explore how to build
a more effective clarification module to boost the
effectiveness of our method.

6 Limitation

There are still several limitations of this paper that
need further improvement. First, as the paper fo-
cuses on black-box LLMs that are accessible via
APIs only, our method has to query the LLMs mul-
tiple times to estimate the output distribution (as
the token-level generation probability is still inac-
cessible when writing this paper). How to decrease
the high query budget and improve the efficiency is
still under-explored. Also, our method relies on an
external clarification model for uncertainty quan-
tification. Solely relying on the LLM suppresses
the performance, and we need to develop a more
suitable clarification module.
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A Implementation Details

A.1 Implementation details for baselines
Mistake detection For the mistake detection task,
we strictly follow the experiment settings from
Kuhn et al. (2022) and Lin et al. (2023). For
each example, we estimate the output distribution
and take the answer with the highest frequency as
the final answer. Then we use the method (and
the prompt) from Lin et al. (2023) to determine
whether the answer is correct by prompting Chat-
GPT. Based on the total uncertainty and correctness
of the answer, we compute the AUROC and con-
duct a grid search to find the best threshold for the
F1 score, where the correct answers are regarded
as positive examples.

For the implementation of ASK4CONF(Tian
et al., 2023) in the mistake detection task, we use
the “Verb. 2S top-1” method (and the correspond-
ing prompts) to estimate the confidence of the lan-
guage model. Rather than asking the LLM to di-
rectly generate an answer, we sample multiple an-
swers and take the most frequent one as the answer.
After that, we prompt the LLM for the confidence
of the most frequent answer. The prompt we use
is:

1: The prompt for mistake detection (ASK4CONF).� �
Answer the following question.
Question: {The testing question}
Answer: {The most frequent answer
}

Provide the probability that your
answer is correct. Give ONLY the
probability , no other words or

explanation.

For example:

Probability: <the probability
between 0.0 and 1.0 that your
solution is correct , without any
extra commentary whatsoever; just
the probability!>� �

Ambiguity detection For the mistake detection
task, we use the total uncertainty for SEMANTIC

UNCERTAINTY (Kuhn et al., 2022), data uncer-
tainty from BNN∗, and the confidence score of
the ambiguity from ASK4CONF (Tian et al., 2023)
to predict whether the input is ambiguous or not.

We slightly modify the prompt of ASK4CONF as
follows:

2: The prompt for mistake detection (ASK4CONF-D).� �
Read the following question:
Question:
{question}
Provide the probability that this
question is ambiguous due to

factors such as ambiguous
entities , ambiguous event
references , or ambiguity over the
answer type. Give ONLY the

probability , no other words or
explanation.

For example:

Probability: <the probability
between 0.0 and 1.0 that the
question is ambiguous (1.0 means
the question is absolutely
ambiguous), without any extra
commentary whatsoever; just the
probability!>� �
A.2 Prompts for Our Clarification Model
We list the prompts we used for clarification gener-
ation on each dataset as follows:

3: The prompt for question rephrase on the Natural
Question dataset� �
In this task , you will receive a
single question , and your goal is
to generate multiple versions of
it that convey the same meaning

as the original. Please format
your responses as follows:
Rephrase 1: [Your rephrased
question]
Rephrase 2: [Another rephrased
question]
Rephrase 3: [Yet another
rephrased question]
....
Ensure that each rephrased
question is distinct from the
others ."

Here are two examples:
(examples skipped)� �



4: The prompt for question disambiguation on the
AmbigQA dataset.� �
In what follows , you will be
given some questions that might
be ambiguous. These ambiguities
can arise from various factors ,
including but not limited to:

1. Ambiguous references to
entities in the question.
2. Multiple properties of objects
/entities in the question leading
to different interpretations.

3. Ambiguities due to unclear
timestamps.
4. Ambiguities stemming from
unclear locations.
5. Multiple valid answer types
based on the question.

For each question , you are to
provide at least two distinct
rephrasings that resolve these
ambiguities. By "rephrasing ," we
mean you should reformulate the
question to be clear and direct ,
eliminating any possible
ambiguity without altering the
original intent of the question.
You should not seek further
information or produce a binary (
yes -no) question as a result of
the clarification. Instead , you
must create a direct question (wh
-question) that aims to obtain a
specific answer.

Please format your responses as
follows (with at least two
rephrasings per question):
Clarifications:
1. [First rephrased question]
2. [Second rephrased question]
3. [Third rephrased question]
...

If the original question is
already clear and unambiguous ,
you should indicate this by
stating , "No clarification needed
."

(In-context examples)� �
5: The prompt for instruction disambiguation on the
AmbigInst dataset.� �
** Objective **
Analyze the given task
description for ambiguities based
on the description itself and

the provided input question. If
the task description is ambiguous
, your task is to clarify it by
interpreting the ambiguous
concepts , specifying necessary
conditions , or using other
methods. Provide all possible
disambiguations.

** Important Rules**
1. Perform detailed analyses
before concluding whether the
task description is clear or
ambiguous.
2. Output disambiguations in the
specified format.
3. Some seemingly unambiguous
task descriptions are actually
ambiguous given that particular
input. So, do not forget to
leverage the input to analyze
whether the task description is
underspecified.

** Output Format **
Your output should follow this
format:
Analyses:
[Think step -by-step to reason on
the clarity of the task
description. After that , output
your judgement on whether the
task description is ambiguous or
not]

Disambiguations:
1. [Disambiguated task
description 1.]
2. [Disambiguated task
description 2.]
3. [Disambiguated task
description 3.]



...

If the task description is clear
and unambiguous , simply output:
Disambiguations:
1. No clarification needed.� �
B AmbigInst Dataset

B.1 Dataset Creation

We generate ambiguous instructions following
the pipeline of SELF-INSTRUCTION (Wang et al.,
2022). Specifically, we first query CHATGPT with
several manually designed ambiguous task descrip-
tions as in-context examples. For better verification
of the ambiguity, we also prompt CHATGPT to
output the cause of the ambiguity. Among the am-
biguous descriptions generated by CHATGPT, we
manually filter out those that have an open-ended
output space such as Write a report on the new
marketing campaign. The final dataset contains
15 ambiguous task descriptions. After that, we
query CHATGPT again to generate ground-truth
clarifications based on the cause of ambiguities
generated in the first query.

Given the collected ambiguous task descriptions
and their clarifications, we then prompt the model
to generate input-output pairs for each task. Specif-
ically, 15 inputs are generated for each task, and
each input is further paired with different output
answers depending on the ground-truth clarifica-
tions. We additionally add a post-processing step
where we filter out the inputs that have exactly the
same answer given different clarifications. The fi-
nal ambiguous instructions consist of 15 tasks with
214 input questions in total.

We take 10 tasks from the Instruction
induction dataset (Honovich et al., 2022) as
the unambiguous tasks, including letters_list,
first_word_letter, second_word_letter,
orthography_starts_with, larger_animal,
singular_to_plural, diff, num_to_verbal,
antonyms, and sum.

We manually add some clarifications to the 10
instructions to remove potential ambiguities. For
example, given the original instruction “Break
the input word into letters, separated
by spaces” for example. Since separated by
spaces might cause ambiguities of how many
spaces should be used between two letters, we clar-
ify it with “Write the inputted word with a

space between each letter”. Each task is also
paired with 15 input-output pairs. Overall, the syn-
thetic dataset contains 25 tasks and 364 different
inputs.

B.2 Dataset Examples

We list several examples from the AMBIGINST

dataset with ambiguous instructions.

▷ 1. Rearrange the objects on the table
in ascending order.

Input: The following table lists the
objects on my desk:

Name Size Weight Color Date of Manufacture Price

Pen 14cm 0.02kg blue 01/15/2022 $1.50
Book 23cm 0.5kg red 08/10/2020 $15.00

Laptop 38cm 1.8kg silver 05/04/2021 $1200.00

▷ 2. Calculate the average of the numbers
in the given list, rounding to the nearest
whole number.

Input: 23.5, 47.2, 30.1, 16.6

▷ 3. Determine the length of a sentence.

Input: The quick brown fox jumps over
the lazy dog.

▷ 4. Sort the names alphabetically.

Input: Courtney Cox, Jennifer Aniston,
Lisa Kudrow, Matthew Perry.

▷ 5. Identify the subject in the sentence.

Input: The CEO of the company gave a
speech about the future of technology.

▷ 6. Count the number of objects in the
given list of objects.

Input: Forks, Spoons, Knives, Plates,
Cups, Spoons, Forks, Spoons, Cups.

▷ 7. Rank the football players based on
their performance.

Input: The following table lists the
statistics of football players:

Name Goal Scored Assists

Lionel Messi 30 12
Cristiano Ronaldo 25 10

Robert Lewandowski 35 5



▷ 8. Sort the data in alphabetical order.

Input: Dog, Cat, Bird, Fish, Aardvark.

▷ 9. Identify the largest city in the
set. Input: The following table lists the
cities in the set:

Name Population Land Area

Paris 2.1 million 105.4 km
Berlin 3.6 million 891.8 km
Madrid 3.3 million 604.3 km

▷ 10. Organize the files by date.

Input: Files to be organized:

Filename Creation Date Last Modified Date

conference-recording.avi 11/10/2020 11/12/2020
birthday-video.mp4 05/05/2021 05/06/2021

budget.xlsx 12/31/2022 01/10/2023

▷ 11. Find the middle value in a list of
numbers.

Input: 12, 20, 35, 46, 52, 66, 74, 81

▷ 12. Determine the square root of a
number.

Input: 81

▷ 13. Find the capital of a country.

Input: South Africa

▷ 14. Classify a movie based on its
rating.

Input: The movie “Toy Story 4” has an
MPAA rating of G, an IMDb rating of 7.8,
and a Rotten Tomatoes rating of 97%.

▷ 15. Select the longest sentence from
the following choices, and output the
sentence index.

Input: The following sentences are
listed:

1. To be, or not to be, that is the
question.

2. Whether ’tis nobler in the mind to
suffer the slings and arrows of
outrageous fortune.

3. Or to take arms against a sea of
troubles and by opposing end them.
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