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ABSTRACT

Recent studies have identified one aggravating factor of LLM hallucinations as
the knowledge inconsistency between pre-training and fine-tuning, where unfa-
miliar fine-tuning data mislead the LLM to fabricate plausible but wrong outputs.
In this paper, we propose a novel fine-tuning strategy called PREREQ-TUNE to
address this knowledge inconsistency and reduce hallucinations. Fundamentally,
PREREQ-TUNE disentangles the learning of skills and knowledge, so the model
learns only the task skills without being impacted by the knowledge inconsistency.
To achieve this, PREREQ-TUNE introduces an additional prerequisite learning
stage to learn the necessary knowledge for SFT, allowing subsequent SFT to focus
only on task skills. PREREQ-TUNE can also be combined with fictitious synthetic
data to enhance the grounding of LLM outputs to their internal knowledge. Ex-
periments show that PREREQ-TUNE outperforms existing baselines in improving
LLM’s factuality across short QA and long-form generation tasks. It also opens
new possibilities for knowledge-controlled generation in LLMs. Our code is avail-
able at https://github.com/UCSB-NLP-Chang/Prereq_tune.git.

1 INTRODUCTION

Hallucination of large language models (LLMs) refers to the phenomenon where LLMs’ outputs
look plausible but diverge from real-world facts. It has become a major concern of LLMs, seriously
undermining their reliability and trustworthiness (Huang et al., 2023; Ji et al., 2023).

Recent research has unveiled one aggravating factor of LLM hallucination, which is the knowledge
inconsistency between the pre-training and tuning (e.g., instruction- or fine-tuning) stages (Gekhman
et al., 2024; Kang et al., 2024; Lin et al., 2024). More specifically, if the tuning stage involves train-
ing examples that require knowledge that an LLM has not seen during pre-training, then the LLM
would be misled to fabricate plausible but wrong answers to unfamiliar questions (Schulman, 2023;
Gao, 2021; Goldberg, 2023). For example, consider fine-tuning a model for a question answering
(QA) task with the example ‘When was John Estes born?’ and assume that the LLM has never
learned about John Estes during pre-training. However, since the LLM is still trained to produce
the correct answer, ‘1987’, it is consequently encouraged to respond with a random legitimate year
whenever it is asked about the birth year of any unknown person, thus giving rise to hallucination.

These findings highlight an important but previously understudied consideration of LLM training,
which is the disentanglement between knowledge and skill. Specifically, it is discovered that knowl-
edge and skills are acquired at different stages of LLM training, the former at pre-training, and the
latter at tuning (Zhou et al., 2023; Gudibande et al., 2024). However, although the focus in the tuning
stage is to learn skills, not knowledge, the learning process is still interfered with by any inconsis-
tency in the knowledge aspect, because the information on the two aspects is entangled. Thus, only
by disentangling knowledge from skill during the tuning stage can we remove such interference.
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Figure 1: Overview of the proposed PREREQ-TUNE strategy.

An ideal powerful disentangling mechanism should achieve maximal robustness against the knowl-
edge inconsistency, to the extent that even fictitious synthetic data, which has zero knowledge over-
lap with pre-training, would still warrant successful fine-tuning without encouraging hallucination.
Unfortunately, this may sound too good to be true, because such an effective disentanglement strat-
egy has yet to be developed for LLM tuning.

In this paper, we propose PREREQ-TUNE, an innovative LLM fine-tuning strategy that explicitly
resolves the disentanglement challenge, and therefore can effectively reduce LLM hallucinations.
As shown in Figure 1, PREREQ-TUNE consists of two stages, an innovative prerequisite learning
stage and a supervised fine-tuning (SFT) stage. In the prerequisite learning stage, we train a LoRA
(Hu et al., 2022), called the knowledge LoRA, that learns all the necessary knowledge required for
SFT. In the SFT stage, the knowledge LoRA is frozen, and a new LoRA, called the skill LoRA, is
imposed on top of the knowledge LoRA, and is trained to perform the SFT task. Since the knowledge
LoRA already eliminates the knowledge mismatch issue, the skill LoRA can focus on learning the
skills without inducing hallucinations.

With the prerequisite learning as a disentanglement mechanism, PREREQ-TUNE can turn fictitious
synthetic data, which is otherwise detrimental to LLM factuality, into a powerful weapon to further
reduce LLM hallucinations. In particular, using fictitious synthetic data, we can create multiple
knowledge LoRAs that contain different versions of knowledge about the same fictitious entity, and
then teach the skill LoRA to produce different answers based on which knowledge LoRA is in
use. In this way, we can force the skill LoRA to ground the LLM answers to the LLM’s internal
knowledge, thus reducing hallucinations. Moreover, unlike real data which are expensive to obtain
and label, fictitious synthetic data can be cheaply scaled up, which would further enhance the LLM’s
factuality thanks to PREREQ-TUNE, informing a new real-data-efficient fine-tuning paradigm.

Our experiments reveal that PREREQ-TUNE can teach an LLM to not only ground its answer to
the knowledge LoRAs, but also, more surprisingly, generalize the grounding to the LLM original
pre-trained knowledge when the knowledge LoRA is removed. As a result, PREREQ-TUNE can
significantly outperform the existing state-of-the-art hallucination reduction algorithms in improv-
ing LLM’s factuality across short QA and long-form generation tasks. In addition, PREREQ-TUNE
enables a more modular design of LLM, with plug-and-play knowledge modules that control the
knowledge access and a skill module that works generically with any knowledge sources, which
opens up many new possibilities far beyond hallucination reduction, such as novel retrieval aug-
mented generation (RAG) paradigms, privacy protection, etc.

2 RELATED WORKS

Reducing LLM hallucinations. Numerous studies have sought to detect and mitigate hallucinations
in LLMs (Weng, 2024; Li et al., 2023a; Chern et al., 2023; Azaria & Mitchell, 2023; Manakul
et al., 2023; Chen et al., 2024; Hou et al., 2024). A common approach to reduce hallucinations is
leveraging supporting evidence, either retrieved from external knowledge sources or generated by
LLMs. Such evidence is often provided as input to help LLMs generate more factual responses
(Shuster et al., 2021; Nakano et al., 2022; Menick et al., 2022; Sun et al., 2023b; Asai et al., 2024;
Feng et al., 2024); or they can assist in detecting incorrect statements and guide LLMs to post-edit
their own generations (Gao et al., 2023; Dhuliawala et al., 2024; Lei et al., 2023; Mishra et al.,
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2024). Beyond using additional evidence, several works have proposed decoding algorithms to
improve LLM factuality during inference (Lee et al., 2022; Chuang et al., 2024; Li et al., 2023b).
More recently, some studies have also explored answer abstention when LLMs encounter unfamiliar
questions (Zhang et al., 2024; Yadkori et al., 2024; Yang et al., 2023; Cheng et al., 2024). Our work
aligns with recent efforts that fine-tune LLMs so that they inherently generate less hallucinated
contents (Tian et al., 2024; Lin et al., 2024; Kang et al., 2024; Ghosal et al., 2024). Unlike existing
methods, we focus on the disentanglement of skills and knowledge and the groundedness of LLMs’
outputs, which leads to superior performance in hallucination reduction.

Fine-tuning LLMs with synthetic data. Synthetic data has shown great potential in fine-tuning
LLMs, offering scalability by automatically creating instruction-response pairs with minimal human
supervision (Wang et al., 2023; Li et al., 2024; Gupta et al., 2024; Yu et al., 2024; Haluptzok et al.,
2023). Additionally, the generation process can be designed to control the training data, allowing
models to be trained for specific skills or aligned with particular human values (Sudalairaj et al.,
2024; Sun et al., 2023a; 2024; Kaur et al., 2024). However, most works do not consider factuality in
fine-tuning. The work closest to ours is Jones et al. (2024), which fine-tunes LLMs on synthetic tasks
to reduce hallucinations. However, they focus on improving consistency with evidence provided in
the context, whereas we improve LLMs’ inherent factuality without provided evidence.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Given a pre-trained LLM (without instruction-tuning), parameterized by θ0, a downstream task T ,
and its corresponding dataset DT , our task is to fine-tune the LLM to the downstream task. For
concreteness, we will base our illustration of the algorithm on a specific task, biography generation.
Generalization to other tasks is discussed in Section 3.6. In this task, DT would typically contain
requests to generate a biography of a certain person, e.g., ‘Generate a biography for John Estes’, as
well as the corresponding human-written biographies.

The challenge we aim to resolve is that DT may require knowledge that the pre-trained LLM θ0

does not know, which would encourage LLM hallucination. Our goal is to design a fine-tuning strat-
egy that can learn the skill, e.g., writing biographies, without being impacted by the inconsistency
between the knowledge involved in DT and the pre-trained knowledge.

3.2 BASIC PREREQ-TUNE STRATEGY

To achieve the disentanglement between knowledge and skill, the core idea of PREREQ-TUNE is to
introduce a prerequisite learning stage that equips the LLM with the necessary knowledge required
for subsequent SFT. More specifically, given the task dataset, DT , PREREQ-TUNE introduces a
prerequisite knowledge dataset, Dknow, that contains all the prerequisite knowledge for the questions
in DT . For biography generation, the prerequisite knowledge includes all the knowledge about the
target persons that is covered in the biographies in DT , such as birth year, birthplace, representative
works, etc. Methods of creating the prerequisite knowledge dataset are detailed in Section 3.4.

With the dataset pair, (Dknow,DT ), the training process of PREREQ-TUNE consists of the following
two steps, as illustrated in Figure 1.

Step 1: Prerequisite learning. Teach the LLM the prerequisite knowledge by training a knowledge
LoRA, parameterized by ∆θknow, to minimize the next-token prediction loss on Dknow:

min
∆θknow

L(θ0 +∆θknow;Dknow), (1)

where L(θ;D) represents the cross-entropy loss of the model θ computed on dataset D.

Step 2: Supervised fine-tuning (SFT). Equip the LLM with the downstream task skill by training
a skill LoRA, parameterized by ∆θskill, to minimize the task loss on DT , with the knowledge LoRA
present and frozen:

min
∆θskill

LT (θ0 +∆θknow +∆θskill;DT ), (2)

where LT (θ;D) represents the downstream task loss of the model θ computed on dataset D. In
biography generation, LT is also the cross-entropy loss on the ground-truth biographies.
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Here is an intuitive explanation of how this works. In the SFT stage, the presence of the knowledge
LoRA ensures that the skill LoRA is always able to ground its generation on the internal knowledge
of LLMs, so it would not have the incentive to fabricate ungrounded facts. Also, since the knowledge
LoRA has already absorbed all the knowledge information in DT , the skill LoRA does not need to
re-learn such knowledge and thus can focus on learning the skill information in DT .

As shown in Figure 1 (right), during inference, the knowledge LoRA is dropped, and only the skill
LoRA is retained, i.e., the LLM weights become θ0+∆θskill. We hypothesize that this can guide ∆θskill

to ground its answer on the original pre-trained knowledge in θ0, not the additional knowledge in
∆θknow. This is particularly necessary if the knowledge in ∆θknow is fictitious (a case to be introduced
in Section 3.3) or interferes with the original pre-trained knowledge.

One caveat, however, is that there exists an obvious gap between training and inference – ∆θknow

is present during training, but absent during inference. It is unclear whether ∆θskill can generalize
its knowledge grounding from the knowledge in ∆θknow to the pre-trained knowledge. Fortunately,
ample experiment evidence shows that the generalization is successful, as discussed in Section 4.2.

3.3 MULTI-VERSION PREREQ-TUNE WITH FICTITIOUS SYNTHETIC DATA

Our preliminary experiments show that the disentanglement mechanism in PREREQ-TUNE is so
powerful that even if (Dknow,DT ) only contain fictitious synthetic data, i.e., biographies of fictitious
people, the skill LoRA can still learn to generate biographies of real people once the knowledge
LoRA (which absorbs the fictitious knowledge) is dropped. Inspired by this, we propose an upgraded
training strategy, called multi-version PREREQ-TUNE, to further enhance the grounding of an LLM’s
outputs on its internal knowledge.

Specifically, rather than having only one dataset pair (Dknow,DT ), we leverage fictitious synthetic
data to create K dataset pairs,

⋃
k=1...K(D(k)

know,D
(k)
T ). Different knowledge datasets D(k)

know contain
different versions of knowledge of the same set of fictitious entities. Different task datasets D(k)

T con-
tain the same set of questions, but with different ground-truth answers matching the corresponding
knowledge in the knowledge set. For example, consider a fictitious person named Avery Linwood.
Assume that we create two versions of knowledge about Avery Linwood in two knowledge datasets.
D(1)

know only contains the birth year of Avery Linwood; D(2)
know only contains the birthplace of Avery

Linwood. Then, the corresponding two task datasets, D(1)
T and D(2)

T , both ask the same question
‘Generate a biography for Avery Linwood.’, but ground-truth answer in the former only talks about
the birth year whereas the latter about the birthplace.

With the multiple versions of datasets, the training steps of PREREQ-TUNE are modified as follows.

Step 1: Prerequisite learning. A different knowledge LoRA is trained on each of the different
knowledge datasets:

min
∆θ

(k)
know

L(θ0 +∆θ
(k)

know;D
(k)

know), ∀k ∈ {1, · · · ,K}. (3)

Step 2: SFT. Only one skill LoRA is trained, but each time with a different knowledge LoRA
present. When knowledge LoRA ∆θ

(k)
know is present, the skill LoRA is trained to produce ground-

truth answers in D
(k)
T , which match the knowledge stored in ∆θ

(k)
know:

min
∆θskill

K∑
k=1

LT (θ0 +∆θ
(k)

know +∆θskill;D
(k)
T ). (4)

Since the K versions of the downstream task datasets contain the same questions but with different
answers, the skill LoRA is forced to link the different answers to the different knowledge LoRA
versions. Thus this method can force groundedness to LLM’s internal knowledge.

Multi-version PREREQ-TUNE can only be enabled by fictitious synthetic data, not real data. This
is because fictitious knowledge, once removed from the knowledge LoRA, is guaranteed to be un-
known to the LLM; whereas real knowledge, even if removed from the knowledge LoRA, may still
exist in the pre-trained knowledge. Thus using fictitious synthetic data ensures a definitive control
over what the LLM knows and does not know.
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Figure 2: Procedure of creating multi-version dataset pairs for the biography generation task.

3.4 DATASET CONSTRUCTION

To generate a dataset pair (Dknow,DT ), there are two strategies, top-down and bottom-up.

Top-down strategy. When the task dataset DT is already available, for example when it is a given
real dataset, we can deduce the knowledge dataset Dknow from DT . In the biography generation task,
for each biography in DT , we break it into individual statements, e.g., ‘John Estes was born in 1987’,
‘John Estes was born in California, USA’ etc. This can be done by prompting an external instruction-
tuned LLM (e.g., GPT-4), or using simple rule-based methods. Each statement is then paraphrased
M times to ensure that the knowledge LoRA learns the knowledge rather than memorizing the
statements. All the paraphrased statements form the Dknow.

Bottom-up strategy. To construct a fictitious dataset pair, we first construct Dknow and then DT . The
fictitious knowledge set can be generated using rule-based templates or summarized from fictitious
articles (details to follow). Then we prompt the external instruction-tuned LLM to generate the task
data for DT . In the biography generation task, this involves asking the external LLM to generate a
biography of a target entity based on all the statements concerning the target listed in Dknow.

Generating multi-version dataset pairs. In the biography generation task, we combine top-down
and bottom-up strategies to generate multi-version (D(k)

know,D
(k)
T ) pairs, as shown in Figure 2. First, we

prompt the external LLM to generate biographies of fictitious entities, using real Wikipedia biogra-
phies as references. We ensure the fictitiousness of these biographies by filtering out those whose
entity names coincide with Wikipedia entries.1 These biographies are called seed biographies. Sec-
ond, the seed biographies are broken into individual statements as in the top-down strategy. Third,
the statements are sampled into different subsets to form different knowledge datasets {D(k)

know}. For
each fictitious entity, we first sample the number of facts (different paraphrases are considered the
same fact) to include, and then sample the statement subset accordingly. Finally, the task datasets
{D(k)

T } are constructed from the corresponding knowledge datasets with the bottom-up strategy.

Statement-based v.s. passage-based knowledge. The knowledge dataset can take different forms.
In the method above, it takes the form of individual statements. An alternative form would be short
passages, which can be generated with just one additional step on top of the statement-based knowl-
edge. After the statement-based knowledge is created, we prompt the external LLM to summarize
the statements of the same entity into one passage. Each passage is also paraphrased M times. A
comparison between the two knowledge forms is presented in Appendix D.3.

3.5 EXTENSION TO ANSWER ABSTENTION

So far, we have described how to teach LLMs to properly respond when it knows the answer. Op-
tionally, PREREQ-TUNE can be extended to also teach LLMs to respond with ‘I don’t know’ when it
is not familiar with the answer, by introducing unfamiliar examples into the dataset pair (Dknow,DT ).
Recall that each knowledge piece in Dknow is paraphrased M times to ensure familiarity. Therefore,
we can vary the number of paraphrases to create variations in familiarity. The knowledge pieces
whose number of paraphrases drops below a threshold (including zero) are identified as unfamiliar

1We also tried filtering by the number of occurrences of the name in the public pre-training corpus but
observed similar performance.
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knowledge. Then, we locate all the questions in DT that depend on the unfamiliar knowledge and
modify their answers to ‘I don’t know’. Note that unfamiliar knowledge can only be created from
the fictitious knowledge, not the real knowledge, otherwise the LLM may have also learned the
knowledge through pre-training. The similar approach can also be leveraged to train the model to
express internal uncertainty, which will be elaborated in Section 4.6.

3.6 EXTENSION TO OTHER TASKS

Although PREREQ-TUNE is described in the context of biography generation above, the method
is readily generalizable to other tasks, with only slight variations in how the datasets are created
(Section 3.4). For other long-form generation tasks that involve generating passages about a given
entity, only a minor change is needed in the prompt for the external LLM used for generating the
datasets (e.g., changing the word ‘biography’ to ‘summary’). For short QA tasks, in the top-down
strategy, rather than asking the external LLM to break the biographies into multiple facts, we ask it
to rewrite each QA pair in the task dataset into one statement, which forms the knowledge dataset.
In the bottom-up strategy, fictitious knowledge and QA pairs are created by filling a pre-defined
template containing an entity name field and some attribute fields, following the format in existing
datasets (Mallen et al., 2023). Further details can be found in Appendix B.1.

4 EXPERIMENTS

We evaluate PREREQ-TUNE on two long-form generation tasks, biography generation and long-
form medical QA, as well as a short QA task. The experiment settings and main results are presented
in Sections 4.1 and 4.2. Subsequent sub-sections present more in-depth studies of PREREQ-TUNE.

4.1 EXPERIMENT SETTINGS

Datasets. For long-form generation, we follow existing works to evaluate on biography generation
and medical QA tasks (Tian et al., 2024). Both tasks require generating a long summary for the
asked entity (a person for the former and a medical entity for the latter). For persons, we use the
input instruction ‘Generate a biography for {person}’; and for medical entities, the instruction is
‘Tell me about {medical entity}’. Since the data in Tian et al. (2024) is unavailable, we collect
our own data and ensure no overlap of entities between training, validation, and test sets. For both
tasks, we use the Wikipedia page as the ground-truth response in the training set. Additionally,
for biography generation, we use the 183 labeled persons in Min et al. (2023) as test set to keep
consistent with prior works (Lin et al., 2024). For QA, we evaluate on PopQA (Mallen et al., 2023),
which contains questions about 16 relations (e.g., ‘Who was the director of Breaking Bad?’). In
preliminary experiments, we notice a substantial amount of ambiguous questions in the dataset (e.g.,
the question ‘In what country is Oxford?’ is asking about a city in Ohio, USA), so we clarify those
questions and remove any that remains ambiguous. Please see Appendix A for details of all datasets.

Metrics. For long-form generation, we use FActScore (Min et al., 2023) to evaluate the generated
summaries, which decomposes summaries into independent claims and verifies each claim against
relevant Wikipedia paragraphs. We report the accuracy as the percentage of correct claims among
all generated claims, averaged across all test examples. In initial evaluation, we observe that mod-
els sometimes hack the metric by generating subjective or generic claims (e.g., ‘She continues to
influence and inspire new generations’). We thus filter the claims to only keep those that present
objective and concrete information. For QA, we follow prior works in using accuracy to measure
hallucinations (Gekhman et al., 2024), where correctness is based on exact match with ground-truth.

Baselines. We consider five baselines. ❶ SFT that performs the standard supervised fine-tuning on
the given task dataset DT . ❷ POPULAR (Ghosal et al., 2024) that only performs SFT on a subset of
DT which the model has knowledge of. This subset is selected either by checking the base model’s
accuracy on the questions or the monthly views of the entity’s Wikipedia page. ❸ FLAME (Lin
et al., 2024), which prompts the base model θ0 to generate summaries using in-context learning and
uses these self-generated summaries as ground-truths for SFT. ❹ FACTTUNE (Tian et al., 2024) that
performs DPO (Rafailov et al., 2023) on top of ❶, where the preference pairs are collected from
the base model’s sampled outputs (generated by in-context learning as in ❸) and annotated with
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Table 1: Performance for long-form generation tasks (persons and medical entities) and short QA.
∗: trained with the same hyperparameters as our method to show the impact of prerequisite learning. †: numbers
different from Ghosal et al. (2024) because we process ambiguous questions; see Appendix D.2 for results on
the original data. ‡: lower than the original paper because the original model only generates 2.7 claims.

Persons Medical Entities QA
Acc. ↑ # Claims Acc. ↑ # Claims Acc. ↑

SFT 32.70 20.8 69.94 9.2 46.42†

POPULAR (Ghosal et al., 2024) 41.16 15.4 65.92 8.1 45.31
FLAME (Lin et al., 2024) 30.32 18.2 67.92 9.8 –
FACTTUNE (Tian et al., 2024) 31.93 19.6 69.13 7.9 –
RL (Kang et al., 2024) 33.20‡ 20.9 70.03 9.0 –

SFTGPT 34.75 19.7 67.98 9.0 –
SFTfictitious∗ 15.44 20.6 64.44 8.9 44.98
PREREQ-TUNE 45.30 16.0 74.35 9.1 47.91

FActScore. ❺ RL (Kang et al., 2024), which runs PPO (Schulman et al., 2017) on top of ❶, and the
reward model is trained on FActScore annotations of the self-generated summaries in ❸.

Implementation details. We use Llama-3-8B (Llama Team, 2024) as the base LLM and LoRA to
fine-tune all baselines and our method. We search training steps, learning rate, and LoRA rank on
the validation set for all methods. For long-form generation, we use multi-version PREREQ-TUNE
on completely fictitious data, whereas for short QA, we use the basic version on a mix of fictitious
and real data. For a fair comparison, all methods access the same real task dataset DT . For baselines
❸-❺, we further ensure the total number of training examples matches our method (i.e., our fictitious
data contains the same number of entities as DT , with the same number of responses per entity).

4.2 MAIN RESULTS

10.0 12.5 15.0 17.5 20.0
# Claims

35

40

45

50

Ac
cu

ra
cy

Ours
Popular
SFTGPT

SFT

Figure 3: Accuracy on biography gen-
eration under different numbers of gen-
erated claims.

Table 1 presents the main results, where PREREQ-TUNE
achieves the best performance across all three datasets,
especially in long-form generation tasks. It outperforms
baselines like FACTTUNE and RL, which use the evalua-
tion metric during training. This suggests the benefits of
PREREQ-TUNE, where explicitly training for alignment
between the model’s outputs and internal knowledge pro-
vides more direct signals for learning groundedness.

Notably, recall that for long-form generation, PREREQ-
TUNE was trained on completely fictitious data, and yet it
still outperforms all baselines trained on real data. This
shows the strong disentanglement power of PREREQ-
TUNE. To further verify this, we introduce a variant ap-
proach, called SFTfictitious, which is also trained on the same fictitious data, but with the prerequisite
learning stage removed. The corresponding results in Table 1 show the worst performance, which
indicates that it is the prerequisite learning that turns the harmful fictitious data into a panacea.

One caveat is that the fictitious data was created using GPT-4, so it is possible that PREREQ-TUNE’s
performance advantage is due to distilling the stronger LLM. To rule out this possibility, we intro-
duce another baseline, SFTGPT, which is fine-tuned on GPT-4 generated paraphrases of the ground-
truth responses in the given dataset DT . The results in Table 1 show a significant advantage of
PREREQ-TUNE over SFTGPT, which confirms that it is not the distillation of GPT-4, but the disen-
tanglement and groundedness designs that contribute to the superior performance of PREREQ-TUNE.
Additionally, we also evaluate PREREQ-TUNE when GPT-4 is replaced with Llama when construct-
ing the synthetic data. Results in Appendix D.1 show similar performance, demonstrating that our
method is applicable using only open-source LLMs.

Our initial explorations reveal a negative correlation between accuracy and the number of generated
claims. To control this interference, we perform another experiment on the biography generation
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Table 2: QA accuracy on fictitious synthetic test
data, which contains unseen questions for the skill
LoRA ∆θskill. Accuracy is computed for two dif-
ferent answers to the same question (V1 and V2).

Acc. V1 Acc. V2

θ0 +∆θ
(1)
know +∆θskill 94.83 6.90

θ0 +∆θ
(2)
know +∆θskill 13.22 95.40

θ0 +∆θskill 15.52 5.17

SFTreal 14.94 5.17

Table 3: Performance on fictitious synthetic train-
ing data. Memorized Entities measures the per-
centage of named entities in the fictitious persons’
biographies that are memorized.

QA Bio Generation
Acc. Memorized Entities

SFTfictitious 58.01 32.63%
θ0 +∆θskill 3.99 10.79%

SFTreal 3.93 10.28%

task where we vary the length of ground-truth responses in the training set to get models that generate
different numbers of claims. Results in Figure 3 show that our method consistently achieves the best
performance across various numbers of generated claims. Table 9 shows some sample outputs.

4.3 THE KNOWLEDGE GROUNDING OF PREREQ-TUNE

Although Section 4.2 shows the superior performance of PREREQ-TUNE in hallucination reduction,
it is still unclear whether PREREQ-TUNE truly learns to ground the response to the knowledge in
knowledge LoRA as designed. To verify this, we design a knowledge grounding test on the QA task,
where we fix the skill LoRA as the one trained for the QA task in the main results, but create two
test knowledge LoRAs, ∆θ

(1)
know and ∆θ

(2)
know. The two test knowledge LoRAs learn two conflicting

versions of knowledge about the same fictitious entities. For example, both knowledge LoRAs learn
about the fictitious person Mira Telka, but version 1 says they are an astrophysicist, and version 2
says they are an architect. It is worth emphasizing that the skill LoRA has never seen these test
entities, nor the two test knowledge LoRAs, during training.

We then ask the LLM questions about these test fictitious entities with or without the test knowl-
edge LoRAs. Table 2 shows the accuracy of LLM’s response evaluated against the two conflicting
versions of ground-truth answers (Acc. V1 and Acc. V2). As can be observed, when one of the
two knowledge LoRAs is plugged in (first two rows), LLM is able to generate the correct answer
matching the corresponding knowledge LoRA over 90% of the time. When the knowledge LoRA is
removed (third row), the LLM is unable to answer either version, whose accuracy is as low as the
SFT baseline (last row) which has never seen any fictitious data. These results are clear evidence that
the LLM answers questions faithfully based on the knowledge provided by the knowledge LoRA.

We find these results very interesting, because they inform an innovative modular design of LLM,
where the knowledge LoRA serves as a plug-and-play “knowledge flash drive” and the skill LoRA
retrieves the knowledge to form an answer. It opens up the possibility of a novel retrieval aug-
mented generation (RAG) paradigm, where the retrieval source is not the external documents, but
the knowledge LoRAs, which may address the inference cost and context length challenges.

4.4 KNOWLEDGE POLLUTION

By design, the skill LoRA does not need to learn any knowledge information because the knowledge
LoRA already covers it all. However, since the skill LoRA is exposed to the knowledge information
in the task dataset DT during training, one might wonder whether any knowledge could accidentally
get picked up by the skill LoRA, a phenomenon we refer to as knowledge pollution. Knowledge
pollution, if present, would indicate that the disentanglement of PREREQ-TUNE is incomplete, and
undermine the reliability of the skill LoRA, especially when the new knowledge is fictitious.

To test whether knowledge pollution is present, we plug the skill LoRA from the main results into the
LLM, remove the knowledge LoRA, and ask LLM questions about the training knowledge. Note that
the main difference from Section 4.3 is that here the questions are about fictitious training knowledge
the skill LoRA has seen, whereas Section 4.3 is about unseen test knowledge. Table 3 shows the QA
accuracy and the percentage of memorized entities for biography generation (the latter is computed
as the percentage of named entities in the fictitious persons’ knowledge that are generated by the
model). The results indicate that without any knowledge LoRAs, the skill LoRA alone (second row)
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Figure 4: Performance as the number of synthetic data scales up.

is unable to answer the questions correctly, and its behavior is similar to SFTreal, which was trained
on real data only and thus guaranteed no knowledge pollution. As a reference, SFTfictitious, which is
trained directly on the fictitious knowledge, achieves a much higher performance.

These results show no evidence of knowledge pollution, and thus verify the strong disentanglement
power of PREREQ-TUNE. It also inspires potential privacy protection applications, where the skill
LoRA can be trained on private data to learn the skills without memorizing any protected knowledge.

4.5 SCALING SYNTHETIC DATA

As discussed, synthetic data has the benefit of cheap scaling. We are thus interested in what would
happen after such scaling. Figure 4 shows the QA and biography generation performance (detailed
settings in Appendix D.5) as the amount of fictitious synthetic data increases. The blue line shows
the performance of PREREQ-TUNE, which shows an increasing trend. The red line shows the per-
formance of directly fine-tuning on the fictitious synthetic data without prerequisite learning, which
exhibits clear degradation. This intriguing contrast confirms that while the fictitious synthetic data
is inherently harmful, PREREQ-TUNE endows it with a positive scaling effect.

4.6 ANSWER ABSTENTION AND VERBALIZED UNCERTAINTY
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Figure 5: The distribution of each re-
sponse type with respect to the log of
monthly page views of the entities.

Finally, we evaluate the performance of the extended ver-
sion of PREREQ-TUNE that also teaches the LLM to say
‘I don’t know’ (Section 3.5). Specifically, for the QA
task, we create multi-version dataset pairs (D(k)

know,D
(k)
T ),

such that for each question, one of the pairs turns the cor-
responding knowledge into unfamiliar knowledge (with
number of paraphrases M = 0), and the corresponding
answer into ‘I don’t know’ (IDK). We compare with a
baseline that splits the real data into unknown and un-
known parts and trains the model for IDK responses on
unknown data (Zhang et al., 2024). On the test set, for
questions that the model knows, our method improves
correctly answered questions from 53.20% to 54.94% and
reduces mistakenly abstained questions from 35.51% to
33.64%. For unknown questions, our method increases
the IDK responses from 85.32% to 85.63%.

The results above confirm that the number of knowledge paraphrases M can effectively control the
familiarity of the knowledge, which inspires us to use M to enable a more fine-grained expression
for uncertainty. Specifically, in addition to certain and unknown, we introduce a third level of
familiarity, unsure, in between by setting another threshold on M . The answers involving the unsure
knowledge are rewritten as ‘I think it might be ...’ (See Appendix B.3 for more details). Figure
5 shows the distribution of the three response types to questions on real entities, across the log of
monthly views of the entity’s Wikipedia page, which is a rough estimation of the entity’s familiarity.
As shown in the figure, the model’s response type generally aligns with the entity’s familiarity,
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indicating that the skill of verbalizing uncertainty, which is learned only on fictitious synthetic data,
can generalize reasonably to the base model’s pre-trained knowledge.

5 CONCLUSION

In this paper, we propose PREREQ-TUNE, a novel fine-tuning strategy to reduce LLM hallucina-
tions. PREREQ-TUNE disentangles the learning of skills and knowledge by introducing a prerequi-
site learning stage, which equips LLMs with the necessary knowledge required for subsequent SFT.
Moreover, PREREQ-TUNE can be combined with fictitious synthetic data to improve the grounded-
ness of LLMs’ generations. Experiments on three datasets show that PREREQ-TUNE outperforms
strong baselines in reducing hallucinations. Further analyses also verify its disentanglement.

6 ACKNOWLEDGEMENTS

The work of Yujian Liu and Shiyu Chang was partially supported by National Science Foundation
(NSF) Grant IIS-2338252, NSF Grant IIS-2207052, and NSF Grant IIS-2302730. The computing
resources used in this work were partially supported by the Accelerate Foundation Models Research
program of Microsoft. Tommi Jaakkola acknowledges support from the MIT-IBM Watson AI Lab
and the NSF Expeditions grant (award 1918839) Understanding the World Through Code.

7 ETHICS STATEMENT

Our work aims to enhance the reliability and trustworthiness of LLMs by reducing the hallucinations
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not eliminate hallucinations. In fact, results in Table 1 and sample outputs in Table 9 show that the
fine-tuned model can still generate factually incorrect statements. Therefore, users should remain
cautious when using our fine-tuned model and are strongly advised to verify its outputs through
additional, trusted information sources. Furthermore, although our analyses in Section 4.4 show
promising results for privacy protection, care should be taken to ensure that no sensitive information
is inadvertently included in real-world deployments.

8 REPRODUCIBILITY STATEMENT

We have taken the necessary steps to ensure the reproducibility of our results. Specifically, Section
4.1 discusses the general experiment settings in our paper. Appendix A provides the detailed steps
to collect and process the datasets used in downstream tasks. Appendix B includes the detailed
steps to construct the fictitious synthetic data used by our method. Finally, Appendix C and the
supplementary material list the implementation details of our method and all baselines, including
the codebase, training hyperparameters, evaluation details, etc.
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Table 4: Number of examples in the real downstream task dataset DT .

Persons Medical Entities Short QA
Training 397 449 10,613
Validation 60 80 789
Test 183 200 2,152

A TASK DATASETS

This section presents the details of collecting and processing the real task dataset DT for three tasks
in our experiments. Table 4 shows the statistics for three datasets.

A.1 LONG-FORM GENERATION

For long-form generation tasks, we collect real-world entities from Wikidata and use the first section
of their Wikipedia page as the ground-truth response. Specifically, we collect entities within the cat-
egory of “Human” for biography generation, and entities in “class of disease” and “medicinal prod-
uct” for medical QA. Following prior works (Min et al., 2023), we consider entities whose Wikipedia
page’s monthly views are greater than 1,000 as popular. For biography generation, we format the
instruction-response pair as ‘Question: Generate a biography for {entity}. Answer: {response}’.
For medical QA, the format is ‘Question: Tell me about {entity}. Answer: {response}’.

A.2 SHORT QA

For the short QA task, we evaluate on PopQA (Mallen et al., 2023) and randomly split the data into
training, validation, and test to ensure no overlapping subjects. During the preliminary study, we
find PopQA contains many ambiguous questions due to the ambiguity in the asked subject (e.g.,
the question ‘Who was the director of Legacy?’ could refer to multiple films with the same name
Legacy). We thus clarify these questions by replacing the subject in the question with its Wikipedia
title, which links to a unique real-world entity. The results on the original dataset are also reported
in Section D.2. We format instruction-response pair as ‘Question: {question}. Answer: {answer}’
for training.

B DATASET PAIRS FOR PREREQ-TUNE

We now describe the detailed procedure for constructing the dataset pair (Dknow,DT ) for PREREQ-
TUNE on each task. Table 5 summarizes the statistics of the constructed datasets.

B.1 BASIC PREREQ-TUNE FOR SHORT QA

For the short QA task, we use a combination of fictitious and real data. For real data, we construct
Dknow from existing DT using the top-down strategy. Specifically, since questions in PopQA are cre-
ated from knowledge triplets (subject, relation, object) using templates, we prompt GPT-4 to convert
each QA template into a statement. For example, the QA pair ‘Question: Who was the director of
{subject}? Answer: {object}’ can be converted to a statement with ‘{subject} was directed by
{object}.’ This template is further paraphrased 15 times by GPT-4, and the statement-based knowl-
edge dataset is constructed by replacing the subject-object pairs in DT into these templates. For the
passage-based knowledge dataset, we directly use the Wikipedia page of the subjects.

For fictitious data, we create Dknow first and then convert it into the task dataset DT using the bottom-
up strategy. Specifically, we prompt GPT-4 to generate triplets (subject, relation, object) where the
subject is a fictitious entity (detailed prompt in Figure 8). We then construct the knowledge dataset
following the above procedure. To create the task dataset, we replace these fictitious triplets into the
original QA templates used in PopQA.
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Table 5: Statistics of the synthetic datasets for PREREQ-TUNE.

Persons Medical Entities Short QA
# entities 397 449 20,000
# knowledge versions 5 5 1
# sentences per version 6.5 4.6 1

B.2 MULTI-VERSION PREREQ-TUNE FOR LONG-FORM GENERATION

For long-form generation tasks about persons and medical entities, we use completely fictitious data
for multi-version PREREQ-TUNE. The dataset construction combines both top-down and bottom-up
strategies. In the following, we describe the detailed steps for biography generation. Datasets for
medical entities are created similarly using the same prompts, except that mentions of persons are
changed to medical entities.

Step 1: Construct seed fictitious biographies. We prompt GPT-4 to generate a biography for a
fictitious person, using real persons’ Wikipedia pages as references. The detailed prompt is listed in
Figure 9. We further filter out fictitious persons whose names coincide with a real Wikipedia entry.
The remaining biographies are called seed biographies.

Step 2: Get individual statements. We decompose the seed biographies into individual statements.
We experiment with two decomposition methods. First, we prompt GPT-4 to break down the bi-
ographies into atomic claims (instruction in Figure 12). Second, we break down the biographies
into sentences and consider each sentence as an individual statement. The experiments in the main
results adopt the first method, and Appendix D.3 further compares these two methods.

Step 3: Construct multi-version knowledge dataset. To create multiple versions of the knowledge
dataset, we randomly sample the statements of a person into different subsets and create a version of
knowledge for each subset. Particularly, we employ a two-step sampling procedure. First, we uni-
formly sample the number of statements to cover, denoted as n. Then we sample n statements from
the total set of statements without replacement. The resulting statements are each paraphrased 15
times to construct one version of the statement-based knowledge for the person. To create passage-
based knowledge, we prompt GPT-4 to generate a summary for the person based on the subset of
statements. The detailed prompt is listed in Figure 10. Each summary is then paraphrased 5 times
to construct one version of the passage-based knowledge for the person.

Step 4: Construct multi-version task dataset. The task dataset is created from the individual
statements using the bottom-up strategy. Specifically, for each subset of statements, we use the
prompt in Figure 10 to instruct GPT-4 to generate a biography, which is considered as the ground-
truth response for the corresponding version of knowledge.

B.3 MULTI-VERSION PREREQ-TUNE FOR VERBALIZED UNCERTAINTY

We use completely fictitious data for the verbalized uncertainty experiment. We modify the fictitious
data in Section B.1 to create the multi-version dataset pairs. Specifically, for each knowledge piece in
Dknow, we create three versions of statement-based knowledge with different numbers of paraphrases.
In D(1)

know, each statement is paraphrased 15 times. This corresponds to the most familiar version of
the knowledge. In D(2)

know and D(3)
know, each statement is paraphrased 6 and 1 times respectively, which

correspond to the moderate and least familiar versions. We then modify the task dataset so that the
ground-truth response aligns with the model’s familiarity. Particularly, in D(1)

T , we use the answer
template ‘I’m sure the answer is ...’. In D(2)

T and D(3)
T , we use the templates ‘I think it might be ...’

and ‘I don’t know, my guess is ...’.
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Table 6: Training hyperparameters in our experiments.

Persons Medical Entities Short QA
Epochs 5, 10, 20, 30, . . . , 80 5, 10, 20, 30, . . . , 80 3, 4, 5
learning rate 3e− 5, 5e− 5 3e− 5, 5e− 5 3e− 5, 5e− 5
Batch size 128 128 512
LoRA r 32, 64, 128 32, 64, 128 16, 32, 64
LoRA α 2 ∗ r 2 ∗ r 2 ∗ r

C IMPLEMENTATION DETAILS

We base our implementations on alignment-handbook.2 All experiments are conducted on 4 80GB
NVIDIA A100 GPUs. During inference, we use greedy decoding for all methods. We tune the
number of training epochs, learning rate, and LoRA rank on the validation set for all methods. Table
6 lists the hyperparameters we search.

On long-form generation tasks, we observe that models sometimes generate low-quality responses
with many repetitions. We thus filter out checkpoints when more than 10% of their generations have
a sep-rep-4 score higher than 0.2, as calculated in Welleck et al. (2020).

To evaluate generated summaries on long-form generation tasks, we use FActScore (Min et al.,
2023) with GPT-4o-mini as the underlying LLM. To prevent models from exploiting the metric by
generating generic or subjective statements, we modify the evaluation pipeline and add a filtering
step after decomposing the generated summary, so that only statements presenting objective and
concrete information are evaluated. Figure 11 lists the prompt we use for this filtering.

C.1 BASELINES

For POPULAR (Ghosal et al., 2024), on long-form generation tasks, we train on the subset of entities
whose monthly Wikipedia page views are greater than 1,000. On the short QA task, we follow the
definition in Gekhman et al. (2024) to split the training set into known and unknown questions and
only fine-tune on known questions.

For FLAME (Lin et al., 2024), we follow settings in the original paper to sample outputs from
the base model θ0 using in-context learning with 5 demonstrations. We randomly sample training
examples in DT to serve as demonstrations. 5 responses are sampled for each entity to match the
amount of data used by our method. To ensure the high quality of training examples, we filter out
samples with a sep-rep-4 score higher than 0.2.

For FACTTUNE (Tian et al., 2024), we evaluate the 5 responses above using FActScore and collect(
5
2

)
preference pairs for each entity, where the response with a higher score is considered as the

chosen response and the other one as the rejected response. We set β = 0.1, learning rate as 1e− 6,
and train for 500 steps following (Lin et al., 2024).

For RL (Kang et al., 2024), we use the official implementation and train the reward model using the
above FActScore annotations.

C.2 BASIC PREREQ-TUNE FOR SHORT QA

On short QA, we use a combination of fictitious and real data. During prerequisite learning, we train
separate knowledge LoRAs for fictitious and real entities. For both fictitious and real entities, we
further train separate knowledge LoRAs on statement-based and passage-based knowledge.

During SFT, we randomly sample a knowledge LoRA at each iteration, either statement-based or
passage-based, and train the skill LoRA on top of it. Additionally, to mitigate the training and
inference gap, we add a regularization term that trains the skill LoRA on top of the base model,

2https://github.com/huggingface/alignment-handbook.
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Table 7: Accuracy on the original
PopQA, without data cleaning.

Accuracy
SFT 36.90
POPULAR 36.85
SFTfictitious 36.05
PREREQ-TUNE 37.50

Table 8: Performance of different formats
for the knowledge dataset Dknow.

QA Bio Generation
Accuracy Accuracy

Both 47.91 45.30
Statement-based 47.58 38.75
Passage-based 47.07 39.75

without knowledge LoRA, which leads to the following optimization problem:

min
∆θskill

LT (θ0 +∆θknow +∆θskill;DT ) + αLT (θ0 +∆θskill;Dreal
T ), (5)

where Dreal
T is the subset in DT that contains only real entities, and α is a hyperparameter.

C.3 MULTI-VERSION PREREQ-TUNE FOR LONG-FORM GENERATION

On long-form generation tasks, we use completely fictitious data. For each knowledge dataset D(k)
know,

we train two knowledge LoRAs, one for statement-based and one for passage-based.

During SFT, at each iteration, we first uniformly sample a version from all possible versions, k ∼
U({1, . . . ,K}). Then we randomly select either the statement-based or passage-based knowledge
LoRA for this version, and train the skill LoRA on top of it using the task dataset D(k)

T .

D ADDITIONAL RESULTS

D.1 PERFORMANCE OF PREREQ-TUNE USING LLAMA
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Popular
SFT

Figure 6: Accuracy on biography generation
under different numbers of generated claims.

We further evaluate PREREQ-TUNE when Llama-
3.1-70B-Instruct (Llama Team, 2024) is used to con-
struct the fictitious synthetic data instead of GPT-4.
Results in Figure 6 show that using Llama achieves
similar performance with GPT-4, demonstrating that
PREREQ-TUNE can be applied when only open-
source LLMs are available.

D.2 PERFORMANCE ON ORIGINAL POPQA

Table 7 shows the results on the original PopQA
dataset, without clarifying questions. Although the
numbers are different from those in Table 1, the gen-
eral trend is similar: PREREQ-TUNE achieves the
best performance whereas SFTfictitious is the worse,
which again demonstrates the impact of the proposed prerequisite learning stage.

D.3 ABLATION STUDY

We now investigate the influence of two design choices in PREREQ-TUNE.

Data formats in the knowledge datasets. Table 8 shows the performance of only using statement-
based, passage-based, or both formats on short QA and biography generation tasks. As can be
observed, combining both formats achieves better performance than using any of the formats alone.
We hypothesize that knowledge is stored differently in knowledge LoRAs trained on these two for-
mats, so training the skill LoRA to work with both formats improves its generalizability to different
knowledge representations.
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Input Instruction
Generate a biography for Eliza Dushku.

Model Responses

SFT

Eliza Dushku (born December 30, 1980) is an American actress and model. She is known for her
role as Kelly Reynolds in the cable broadcast series Dollhouse (2009–2010). She also appeared in
the films True Lies (1994), The Tartuffe (2001), Bring It On (2000), Dog Days of Summer (2007),
Tortured (2008), Gunshot Straight (2008), Miss Match (2003), Wrong Turn at Tahoe (2009), Eloise
(2017), and Jules (2019). From 2014 to 2017, she portrayed Athena on FX’s Sons of Anarchy and
its spin-off Mayans M.C.. Dushku also performed the voice of Athena in the video games True Lies
(1994) and as Jessica in the first two Guild Wars games.

SFTGPT

Eliza Patrice Dushku (born December 30, 1980) is an American actress and model. She is
recognized for her roles as FBI Special Agent Kimberly Price in the TNT series Bull, as Athena on
the Syfy series Dollhouse, and as the voice of Catwoman in the animated film Batman: Assault on
Arkham. Dushku has also appeared in films such as True Lies (1994), The Scorpion King (2002),
Wrong Turn (2003), Jay and Silent Bob Strike Back (2001), Bring It On (2000), and Soul Man
(2014). She had recurring roles on the series Tru Calling and Angel and has featured in the video
games True Crimes: Streets of L.A. and Dog Day Afternoon.

POPULAR

Eliza Patricia Dushku (born December 30, 1980) is an American actress and model. She is known
for her roles as Faith in the action film series Buffy the Vampire Slayer (1992–2003) and its
spin-off television series Angel (1999–2004), as well as her roles in True Lies (1994), Bring It On
(2000), Jay and Silent Bob Strike Back (2001), Wrong Turn (2003), and Dollhouse (2009–2010).
She also voiced Catwoman in the animated film Catwoman (2004) and voiced the character of
Chelsea in the video game Mass Effect 3 (2012).

PREREQ-
TUNE

Eliza Patricia Dushku (born December 30, 1980) is an American actress, model, and activist. She is
best known for her television roles as Faith on the action series Buffy the Vampire Slayer
(1998–2003) and its spin-off series Angel (2000–2004), and as Jessica Angel in True Lies (1994).
She also starred in the Fox series Dollhouse (2009–2010) and appeared in the films True Lies
(1994), The New Guy (2002), Bring It On (2000), Jay and Silent Bob Strike Back (2001), Soul
Survivors (2001), Wrong Turn (2003), and The Alphabet Killer (2007).

Table 9: Example input instruction and model responses on the biography generation task. We mark
factually correct information in green and hallucinated information in red.
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Figure 7: Accuracy on biography generation
with two decomposition methods.

Methods to decompose seed biographies. We
compare two methods to decompose seed biogra-
phies into individual statements. The first method
prompts GPT-4 for decomposition (GPT-4-based),
and the second method simply considers each sen-
tence as a statement (sentence-based). The main
difference between the two is that GPT-4 breaks
down biographies into atomic statements that cannot
be further decomposed, whereas sentence-based de-
composition may contain multiple facts within each
statement (e.g., ‘Emma Louise Carter (born May 22,
1965) is an American politician, entrepreneur, and
philanthropist who served as the 48th vice president
of the United States from 2009 to 2017 under Pres-
ident James Matthews.’). Results in Figure 7 show
that GPT-4-based decomposition outperforms sentence-based decomposition, which suggests that
more fine-grained decomposition benefits the model in learning groundedness.

D.4 SAMPLE OUTPUTS

Table 9 shows model responses on an example for the biography generation task, which illustrates
that our method generates less hallucinated content.
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D.5 EXPERIMENT SETTINGS FOR SCALING SYNTHETIC DATA

Figure 4 shows the performance when we scale up the amount of synthetic data. Specifically, for
short QA, we increase the number of synthetic questions. For biography generation, we increase the
number of fictitious synthetic persons and use sentence-based decomposition for PREREQ-TUNE.

Given the following (subject, object) pairs that have the relation of {
relation}, generate 10 fictitious pairs that have the same relation.
{example subject-object pairs}

- Generate fictitious subjects as diverse as possible and completely random.
- Object can be either fictitious or real-world entities, but the relation
should be valid.
- Output each pair at a line in JSON format with keys "subject" and "object
".
- Directly generate results and nothing else.

Figure 8: Prompt used for creating fictitious data for the QA task.

Here is the Wikipedia biography for {real person}:
{wiki summary}

Using this as a reference, generate a biography for a completely fictitious
person.

Requirements:
- The person should be fictitious.
- The biography should resemble the provided Wikipedia biography in
structure but pertain to the fictitious person.
- Do not mention "fictitious" or any other indication that the person is not
real.
- Generate outputs in valid json string format with keys "person" and "
biography".

Figure 9: Prompt used for creating fictitious biographies.

Generate a biography for the person {fictitious person} based on the
following facts.
Facts:
{set of statements}

Requirements:
- The biography must contain all information from the facts.
- Only include information from the facts. Do not add any other information.
- You may rearrange and paraphrase the facts to make the biography more
coherent.
- Directly generate the biography and nothing else.

Figure 10: Prompt used for creating a biography from a set of statements.
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Given the following claims about {entity}, please select the ones that
present concrete and specific information. Omit any claims that are generic
or purely subjective.

Examples of claims with concrete information:
{positive_examples}

Examples of generic or subjective claims:
{negative_examples}

Claims:
{decomposed claims}

Requirements:
- Copy each concrete claim after the "-" and nothing else.

Figure 11: Prompt used for filtering out generic or subjective claims in FActScore.

Please break down the following biography about {person} into independent
facts. Focus on facts that present concrete and objective information.
Biography:
{biography}

Requirements:
- Generate atomic facts that cannot be further decomposed.
- Include all information from the biography in the facts.
- Facts should target {person}, not other entities.
- Output each fact at a separate line after "- " and nothing else.

Figure 12: Prompt used for decomposing seed biographies into individual statements.
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